Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.3.183

Structural and Optical Properties of Self-assembled InAs Quantum Dots as a Function of Rapid Thermal Annealing Temperature  

Cho, Shin-Ho (Department of Electronic Materials Engineering, Silla University)
Publication Information
Korean Journal of Materials Research / v.16, no.3, 2006 , pp. 183-187 More about this Journal
Abstract
We present the effects of rapid thermal annealing (RTA) temperature on the structural and optical properties of self-assembled InAs quantum dot (QD) structures grown on GaAs substrates by molecular beam epitaxy (MBE). The photoluminescence (PL) measurements are performed in a closed-cycle refrigerator as a function of temperature for the unannealed and annealed samples. RTA at higher temperature results in the increase in island size, the corresponding decrease in the density of islands, and the redshift in the PL emission from the islands. The temperature dependence of the PL peak energy for the InAs QDs is well expressed by the Varshni equation. The thermal quenching activation energies for the samples unannealed and annealed at $600^{\circ}C$ are found to be $25{\pm}5meV$ and $47{\pm}5$ meV, respectively.
Keywords
Quantum Dot; Rapid Thermal Annealing; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Raz, N. Shuall, G. Bahir, D. Ritter, D. Gershoni and S. N. G. Chu, Appl. Phys. Lett., 85, 3578 (2004)   DOI   ScienceOn
2 Y. P. Varshni, Physica, 39, 149 (1967)   DOI   ScienceOn
3 K. Kamath, P. Bhattacharya and J. Phillips, J. Cryst. Growth, 175, 720 (1997)   DOI   ScienceOn
4 Q. Xie, N. P. Kobayashi, T. R. Ramachandran, A. Kalburge, P. Chen and A. Madhukar, J. Vac. Sci. Technol., B14, 2203 (1996)   DOI   ScienceOn
5 G. Capellini, L. Di. Gaspare, F. Evangelisti and E. Palange, Appl. Phys. Lett., 70, 493 (1997)   DOI   ScienceOn
6 S. L. S. Freire, L. A. Cury, F. M. Matinaga, E. C. Vala-dares, M. V. B. Moreira, A. G. de Oliveira, A. R. Alves, J. M. C. Vilela, M. S. Andrade, T. M. Lima and J. A. Sluss, J. Vac. Sci. Technol., B14, 3555 (1996)   DOI   ScienceOn
7 D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, E. Petitprez and P. Basmaji, J. Vac. Sci. Technol., B14, 2212 (1996)   DOI   ScienceOn
8 A. O. Kosogov, P. Werner, U. Gosele, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu Egorov, A. E. Zhukov, P. S. Kpev, N. A. Bed and Zh. I. Alferov, Appl. Phys. Lett., 69, 3072 (1996)   DOI   ScienceOn
9 Y. J. Park, C. K. Hahn, K. M. Kim, S. K. Jung, E. K. Kim and S. K. Min, SPIE, 3287, 305 (1998)   DOI
10 B. D. Min, Y. Kim, E. K. Kim, S. K. Min and M. J. Park, Phys. Rev., B57, 11879 (1998)   DOI
11 C. S. Peng, Q. Huang, W. Q. Cheng, J. M. Zhou, Y. H. Zhang, T. T. Sheng and C. H. Tung, Phys. Rev., B57, 8805 (1998)   DOI
12 T. Yamada, H. Yamaguchi and Y. Horikoshi, Jpn. J. Appl. Phys., 35, L822 (1996)   DOI   ScienceOn
13 V. A. Egorov, G. E. Cirlin, N. K. Polyakov, V. N. Petrov, A. A. Tonkikh, B. V. Volovik, Y. G. Musikhin, A. E. Zhukov, A. F. Tsatsulnikov and V. M. Ust inov, Nanotechnology, 11, 323 (2000)   DOI   ScienceOn
14 H. Lipsanen and M. Sopanen, Phys. Rev., B51, 1 (1995)   DOI   ScienceOn
15 M. Geiger, A. Bauknecht, F. Adler, H. Schweiger and F. Scholz, J. Cryst. Growth, 170, 558 (1997)   DOI   ScienceOn
16 G. S. Solomon, J. A. Trezza, A. F. Marshall and J. S. Harris, Jr., J. Vac. Sci. Technol., B14, 2208 (1996)   DOI   ScienceOn
17 B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Y. Kim and E. K. Kim, Appl. Phys. Lett., 73, 3129 (1998)   DOI