DOI QR코드

DOI QR Code

Sensitivity enhancement of H2 gas sensor using PbS quantum dots

황화납 양자점 감지막을 통해 감도가 개선된 수소센서

  • Kim, Sae-Wan (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Na-Ri (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kwon, Jin-Beom (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Jae Keon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Dong Geon (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Kong, Seong Ho (Safety System R&D Group, Korea Institute of Industrial Technology) ;
  • Jung, Daewoong (Safety System R&D Group, Korea Institute of Industrial Technology)
  • 김세완 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 김나리 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 권진범 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 김재건 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 정동건 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 공성호 (한국생산기술연구원, 안전시스템연구그룹) ;
  • 정대웅 (한국생산기술연구원, 안전시스템연구그룹)
  • Received : 2020.10.22
  • Accepted : 2020.11.24
  • Published : 2020.11.30

Abstract

In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Keywords

References

  1. K. H. Kang, K. Y. Park, S. D. Han, and S. Y. Choi, "Fabrication of MISFET type hydrogen sensor for high performance", Trans Korean Hydrogen. New Energy Soc., Vol. 15, No. 4, pp. 317-323, 2004.
  2. S. D. Han, "Review and new trends of hydrogen gas sensor technologies", J. Sens. Sci. Technol., Vol. 19, No. 2, pp. 67-86, 2010. https://doi.org/10.5369/JSST.2010.19.2.067
  3. P. Wadkar, D. Bauskar, and P. Patil, "High performance H2 sensor based on ZnSnO3 cubic crystallites synthesized by a hydrothermal method", Talanta, Vol. 105, pp. 327-332, 2013. https://doi.org/10.1016/j.talanta.2012.10.051
  4. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, "An overview of hydrogen safety sensors and requirements", Int. J. Hydrog. Energy, Vol. 36, pp. 2462-2470, 2011. https://doi.org/10.1016/j.ijhydene.2010.04.176
  5. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, "Hydrogen sensor-review", Sens. Actuator. B-chem, Vol. 157, pp. 329-352, 2011. https://doi.org/10.1016/j.snb.2011.04.070
  6. A. Katsuki, and K. Fukui, "H2 selective gas sensor based on SnO2", Sens. Actuators B, Vol. 52, No. 1-2, pp. 30-37, 1998. https://doi.org/10.1016/S0925-4005(98)00252-4
  7. I. Treglazov, L. Leonova, Y. Dobrovolsky, A. Ryabov, A. Vakulenko, and S. Vassiliev, "Electrocatalytic effects in gas sensors based on low-temperature superprotonics", Sens. Actuators B, Vol. 106, No. 1, pp. 164-169, 2005. https://doi.org/10.1016/j.snb.2004.05.053
  8. H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, "High temperature fuel cell with ceria-yttria solid electrolyte", J. Electrochem. Soc. Vol. 135, No. 8, pp. 2077-2080, 1988. https://doi.org/10.1149/1.2096212
  9. A. D'Amico, A. Palma, and E. Verona, "Surface acoustic wave hydrogen sensor", Sens. Actuators, Vol. 3, pp. 31-39, 1982. https://doi.org/10.1016/0250-6874(82)80004-8
  10. T. Seiyama, and S. Kagawa, "Study on a detector for gaseous components using semiconductive thin films", Anal. Chem., Vol. 38, No. 8, pp. 1069-1073, 1966. https://doi.org/10.1021/ac60240a031
  11. Z. Tianshu, P, Hing, Y. Li, and Z. Jiancheng, "Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors", Sens. Actuators B, Vol 60, No. 2-3, pp. 208-215, 1999. https://doi.org/10.1016/S0925-4005(99)00272-5
  12. Y. Shimizu, E. Kanazawa, Y. Takao, and M. Egashira, "Modification of H2-sensitive breakdown voltages of SnO2 varistors with noble metals", Sens. Actuators B, Vol. 52, No. 1-2, pp. 38-44, 1998. https://doi.org/10.1016/S0925-4005(98)00253-6
  13. Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, "High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd", Sens. Actuators B, Vol 83, No. 1-3, pp. 195-201, 2002. https://doi.org/10.1016/S0925-4005(01)01040-1
  14. W. J. Moon, J. H. Yu, and G. M. Choi, "The CO and H2 gas selectivity of CuO-doped SnO2-ZnO composite gas sensor", Sens. Actuators B, Vol 87, No. 3, pp. 464-470, 2002. https://doi.org/10.1016/S0925-4005(02)00299-X
  15. J. Wang, M. Tong, X. Wang, and Y. Ma, "Preparation of H2 and LPG gas sensor", Sens. Actuators B, Vol. 84, No. 2-3, pp. 95-97, 2002. https://doi.org/10.1016/S0925-4005(01)01065-6
  16. G. Li, H. Kobayashi, J. M. Taylor, R. Ikeda, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Toh, S. Matsumura, and H. Kitagawa, " Hydrogen storage in Pd nanocrystals covered with a metal-organic framework", Nat. Mater., Vol. 13, pp. 802-806, 2014. https://doi.org/10.1038/nmat4030
  17. X. Li, Z. Gu, J. Cho, H. Sun, and P. Kurup, "Tin-copper mixed metal oxide nanowires: synthesis and sensor response to chemical vapors", Sens. Actuator. B, Vol. 158, pp. 199-207, 2011. https://doi.org/10.1016/j.snb.2011.06.004
  18. J. Wang, M. Tong, X. Wang, and Y. Ma, "Preparation of H2 and LPG gas sensor", Sens. Actuators B, Vol. 84, No. 2-3, pp. 95-97, 2002. https://doi.org/10.1016/S0925-4005(01)01065-6
  19. F. A. Gianturco, E. Yurtsever, M. Satta, and R. Wester, "Modeling Ionic reactions at interstellar temperature: The case of NH2- + H2 - NH3+ +H- ", J. Phys. Chem. A, Vol. 123, No. 46, pp. 9905-9918, 2019. https://doi.org/10.1021/acs.jpca.9b07317
  20. I. Moreels, K. Lambert, D. Smeets, D. Muynck, T. Nollet, J. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, "Size-Dependent Optical Properties of Colloidal PbS Quantum Dots", ACS Nano, Vol. 3, pp. 3023-3030, 2009. https://doi.org/10.1021/nn900863a
  21. H. Zhao, M. Chaker, N. Wu, and D. Ma, "Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots", J. Mater. Chem., Vol. 21, pp. 8898-8904, 2011. https://doi.org/10.1039/c1jm11205h
  22. X. Yang, F. Ren, Y. Wang, T. Ding, H. Sun, D. Ma, and X. W. Sun, "Iodide capped PbS/CdS core-shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes", Sci. Rep., Vol. 7, pp. 14741-14746, 2017. https://doi.org/10.1038/s41598-017-15244-5
  23. J. B. Kwon, S. W. Kim, J. S. Lee, C. E. Park, O. S. Kim, B. Xu, J. H. Bae, and S. W. Kang, "Uncooled short-wave infrared sensor based on PbS quantum dots using ZnO NPs", Nanomaterials, Vol. 9, No. 7, pp. 926, 2019. https://doi.org/10.3390/nano9070926
  24. E. H. Sargent, "Size-tunable infrared (1000-1600 nm) electroluminescence from solution-processible PbS quantum dot nanocrystals: Towards monolithic optoelectronic integration on silicon", J. Mod. Opt., Vol. 51, pp. 2797-2803, 2004. https://doi.org/10.1080/09500340408231838
  25. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gruverman, and J. Huang "Giant switchable photovoltaic effect in organometal trihalide perovskite devices", Nat. Mater., Vol. 14, pp. 193-198, 2015. https://doi.org/10.1038/nmat4150
  26. J. Gao, S. H. Jeong, F. Lin, P. T. Erslev, O. E. Semonin, J. M. Luther, and M. C. Beard, "Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells", Appl. Phys. Lett., Vol. 102, pp. 43506-43510, 2013. https://doi.org/10.1063/1.4789434
  27. X. Zhong, S. Liu, Z. Zhang, L. Li, Z. Wei, and W. Knoll, "Synthesis of high-quality CdS, ZnS, and ZnxCd1-xS nanocrystals using metal salts and elemental sulfur", J. Mater. Chem., Vol. 14, pp. 2790-2794, 2004 https://doi.org/10.1039/B407556K
  28. C. Pacholski, A. Kornowski, and H. Weller "Self- assembly of ZnO: from nanodots to nanorods", Angew. Chem.Int. Ed., Vol. 41, pp. 1188-1191, s
  29. S. B. Qadri, A Singh, and M. Yousuf, "Structural stability of PbS films as a function of temperature", Thin Solid Films, Vol. 431-432, pp. 506-510, 2003. https://doi.org/10.1016/S0040-6090(03)00245-1