• Title/Summary/Keyword: In-folding Structure

Search Result 211, Processing Time 0.026 seconds

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3051-3056
    • /
    • 2011
  • We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

Wind load analysis of Structure for Folding Solar Power System (접이식 태양광 발전 구조물의 풍하중해석)

  • Son, Chang-Woo;Kim, Tae-Kyun;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.1-7
    • /
    • 2018
  • A folding solar power system is a stand-alone system and is a structure with solar panels attached. It consists of supporting parts and folding parts for ease of movement. While the efficiency of solar panels is also important to produce electricity by maximizing the power efficiency of solar panels, the most important thing is structure stability. The folding solar power structure intended to be developed in this study is a collapsible structure that is easy to move and install into systems that can produce electricity from grid to independent. Since these structures are installed outdoors, wind loads, snow cover, etc. In this paper, the wind loads most affected by the folding solar power generation structure were obtained using the MeshFree Finite Element Method. MeshFree is a program that makes it easier for users to interpret by simplifying the mesh tasks required by an existing analysis. The analysis showed that the greater the angle of inclination of the wind to the ground, the greater the wind load. In addition, reliability was ensured by wind load testing.

A Study on Structure Analysis and Fatigue Life of the Common Rail Pipe (커먼레일 파이프의 구조해석 및 피로수명에 관한 연구)

  • Song, M.J.;Jung, S.Y.;Hwang, B.C.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.19 no.2
    • /
    • pp.88-94
    • /
    • 2010
  • The next generation of diesel engine can operate at high injection pressure up to 1,800bar. The common rail pipe must have higher internal strength because it is directly influenced by the high-pressure fuel. Folding defects in the Common rail pipe can not ensure the structural safety. Therefore, Preform design and fatigue-life analysis are very important for preventing the head of the common rail pipe from folding in the heading process and for predicting fatigue life according to the amount of folding. In this study, a closed form equation to predict fatigue life was suggested by Goodman theory and pressure vessels theory in ASME Code in order to develop an optimization technique of the heading process and verified its reliability through fatigue-structural coupled field analysis. The results calculated by the theory were in good agreement with those obtained by the finite element analysis.

An 8-b 1GS/s Fractional Folding CMOS Analog-to-Digital Converter with an Arithmetic Digital Encoding Technique

  • Lee, Seongjoo;Lee, Jangwoo;Lee, Mun-Kyo;Nah, Sun-Phil;Song, Minkyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.473-481
    • /
    • 2013
  • A fractional folding analog-to-digital converter (ADC) with a novel arithmetic digital encoding technique is discussed. In order to reduce the asymmetry errors of the boundary conditions for the conventional folding ADC, a structure using an odd number of folding blocks and fractional folding rate is proposed. To implement the fractional technique, a new arithmetic digital encoding technique composed of a memory and an adder is described. Further, the coding errors generated by device mismatching and other external factors are minimized, since an iterating offset self-calibration technique is adopted with a digital error correction logic. A prototype 8-bit 1GS/s ADC has been fabricated using an 1.2V 0.13 um 1-poly 6-metal CMOS process. The effective chip area is $2.1mm^2$(ADC core : $1.4mm^2$, calibration engine : $0.7mm^2$), and the power consumption is 88 mW. The measured SNDR is 46.22 dB at the conversion rate of 1 GS/s. Both values of INL and DNL are within 1 LSB.

Thermodynamic Properties of Ubiquitin Folding Intermediate (Ubiquitin 폴딩 intermediate의 열역학적 특성)

  • Park, Soon-Ho
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Thermodynamic properties of ubiquitin transient folding intermediate were studied by measuring folding kinetics in varying temperatures and denaturant concentrations. Through quantitative kinetic modeling, the equilibrium constant, hence folding free energy, between unfolded state and intermediate state in several different temperatures were calculated. Using these values, the thermodynamic parameters were estimated. The heat capacity change $({\Delta}C_p)$ upon formation of folding intermediate from unfolded state were estimated to be around 80% of the overall folding reaction, indicating that ubiquitin folding intermediate is highly compact. At room temperature, the changes of enthalpy and entropy upon formation of the intermediate state were observed to be positive. The positive enthalpy change suggests that the breaking up of the highly ordered solvent structure surrounding hydrophobic side-chain upon formation of intermediate state. This positive enthalpy was compensated for by the positive entropy change of whole system so that formation of transient intermediate has negative free energy.

Design of a 7-bit 2GSPS Folding/Interpolation A/D Converter with a Self-Calibrated Vector Generator (자체보정 벡터 발생기를 이용한 7-bit 2GSPS A/D Converter의 설계)

  • Kim, Seung-Hun;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.14-23
    • /
    • 2011
  • In this paper, a 7-bit 2GSPS folding/interpolation A/D Converter(ADC) with a Self-Calibrated Vector Generator is proposed. The ADC structure is based on a folding/interpolation architecture whose folding/interpolation rate is 4 and 8, respectively. A cascaded preprocessing block is not only used in order to drive the high input signal frequency, but the resistive interpolation is also used to reduce the power consumption. Based on a novel self-calibrated vector generator, further, offset errors due to device mismatch, parasitic resistors. and parasitic capacitance can be reduced. The chip has been fabricated with a 1.2V 0.13um 1-poly 7-metal CMOS technology. The effective chip area including the calibration circuit is 2.5$mm^2$. SNDR is about 39.49dB when the input frequency is 9MHz at 2GHz sampling frequency. The SNDR is improved by 3dB with the calibration circuit.

Appraisal of deployable dome structures under wind loading

  • Parke, G.A.R.;Toy, N.;Savory, E.;Abedi, K.;Chenaghlou, R.
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.317-336
    • /
    • 1998
  • In this paper the appraisal of a folding dome structure under the influence of wind loading is discussed. The foldable structure considered is constructed from an assembly of interconnected elements, together with a flexible membrane, all of which are initially store in a compact form and on deployment expand, like an umbrella, into a dome structure. Loading on the dome was obtained from a wind tunnel analysis of the pressure distribution over the roof of a 1:10 scale model of the structure. The critical loading obtained from the wind tunnel investigation was used, together with individual member and material tests, to form a series of numerical non-linear finite element models which were, in turn, used to investigate the forces within the structure. The numerical analysis was used to determine the critical wind loading that the structure can sustain, as well as providing a method by which to investigate the failure modes of the structure. In order to enhance the load carrying capacity of the dome it was found that both the strength and stiffness of the structural nodes needed to be enhanced and in addition, changes were necessary to substantially increase the stiffness of the individual member and caps.

A new type of helix in protein structure.

  • Son, Hyeon-S.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.86-87
    • /
    • 2000
  • Protein folding is a fundamental problem in structural bioinformatics and so numerous studies have been devoted to the subject. As the most common regular secondary conformation in proteins, helix has been an important ingredient of the protein folding problem. In particular, alanine based polypeptides are widely studied to identify the helix folding process in that the aianine amino acid is known to have one of the highest helix propensities. In principle, intrinsic helix propensities can be obtained from gas-phase measurements where solvent effect is absent. Hudgins et al. studied alanine-based peptides in vacuo using high-resolution ion mobility measurement technique. It was reported that introduction of a single Iysine at the C terminus resulted in the formation of very stable, monomeric polyalanine helices. We also have investigated helix formation in vacuo with different terminal charge conditions; we have found a new type of helix motif, To the best of our knowledge, this type of helix conformation has not been characterized before and we name it as I-helix.

  • PDF

Design of a 1.2V 7-bit 800MSPS Folding-Interpolation A/D Converter with Offset Self-Calibration (Offset Self-Calibration 기법을 적용한 1.2V 7-bit 800MSPS Folding-Interpolation A/D 변환기의 설계)

  • Kim, Dae-Yun;Moon, Jun-Ho;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.18-27
    • /
    • 2010
  • In this paper, a 1.2V 7-bit 1GSPS A/D converter with offset self-calibration is proposed. The proposed A/D converter structure is based on the folding-interpolation whose folding rate is 2, interpolation rate is 8. Further, for the purpose of improving the chip performance, an offset self-calibration circuit is used. The offset self-calibration circuit reduce the variation of the offset-voltage,due to process mismatch, parasitic resistor, and parasitic capacitance. The chip has been fabricated with a 1.2V 65nm 1-poly 6-metal CMOS technology. The effective chip area is $0.87mm^2$ and the power dissipates about 110mW at 1.2V power supply. The measured SNDR is about 39.1dB when the input frequency is 250MHz at 800MHz sampling frequency. The measured SNDR is 3dB higher than the same circuit without any calibration.

Heliospheric Current Sheet Probe

  • Yu, Yi
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.23 no.1
    • /
    • pp.12-17
    • /
    • 1995
  • Space explorations by spacecraft have detected the solar wind and the interplanetary magnetic field (IMF), whose existences had been suggested to explain the narrow comet plasma tail formation before the space age. Thereafter, a global magnetic structure seperating the opposite polarity regions of IMF in the heliosphere was discovered (Wilcox and Ness, 1965). It is called helispheric current sheet (HCS). Comets have been proved as the useful heliospheric probes. Recently, another capability of comet as a probe of HCS was suggested by Yi (1994). In the process of comet plasma tail disconnection events (EDs) showing the ray folding and main tail severance between the folding rays (Brandt, 1982), the folding rays preceding DE might be the visualization of HCS draped around comet, In order to test this new idea, the association of comet Halley 16 DEs with comet crossings of HCS confirmed by spacecraft observations at the time of comet Halley apparition 1985~1986 was investigated.

  • PDF