Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.8.3051

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach  

Lee, Eun-Sang (Department of Chemistry, Seoul National University)
Jung, Youn-Joon (Department of Chemistry, Seoul National University)
Publication Information
Abstract
We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.
Keywords
Protein folding; Free energy; Ubiquitin; BBL; PAZ-siRNA complex;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jackson, S. E. Org. Biomol. Chem. 2006, 4, 1845.   DOI
2 Grater, F.; Grubmuller, H. J. Struct. Biol. 2007, 157, 557.   DOI
3 Krantz, B. A.; Sosnick, T. R. Biochemistry 2000, 39, 11696.   DOI
4 Roychaudhuri, R.; Yang, M.; Hoshi, M. M.; Teplow, D. B. J. Biol. Chem. 2009, 284, 4749.   DOI
5 Sipe, J. D.; Cohen, A. S. J. Struct. Biol. 2000, 130, 88.   DOI
6 Jackson, S. E.; Fersht, A. R. Biochemistry 1991, 30, 10428.   DOI
7 Onuchic, J.; Luthey-Schulten, A.; Wolynes, P. G. Annu. Rev. Phys. Chem. 1997, 48, 545.   DOI
8 Plaxco, K. W.; Simos, K. T.; Baker, D. J. Mol. Biol. 1998, 277, 985.   DOI
9 Lee, J.; Shin, S. Bull. Kor. Chem. Soc. 2008, 29, 741.   DOI
10 Went, H. M.; Benitez-Cardoza, C. B.; Jackson, S. E. FEBS Lett. 2004, 567, 333.   DOI
11 Packman, L. C.; Perham, R. N. FEBS Lett. 1986, 206, 193.   DOI
12 Garcia-Mira, M. M.; Sadqi, M.; Fischer, N.; Sanchez-Ruiz, J. M.; Muoz, V. Science 2002, 298, 2191.   DOI
13 Ma, J. B.; Ye, K.; Patel, D. J. Nature 2004, 429, 318.   DOI   ScienceOn
14 Hai-Feng, C. J. Chem. Theory Comput. 2008, 4, 1360.   DOI
15 Wako, H.; Saito, N. J. Phys. Soc. Japan 1978, 44, 1931.   DOI
16 Lee. W.; Park. H.; Lee. S. Bull. Kor. Chem. Soc. 2008, 29, 363.   DOI
17 Urbanc, B.; Cruz, L.; Ding, F.; Sammond, D.; Khare, S.; Buldyrev, S. V.; Stanley, H. E.;Dokholyan, N. V. Biophys. J 2004, 87, 2310.   DOI
18 Schnabel, S.; Bachmann, B.; Janke, W. Phys. Rev. Lett. 2007, 98, 48103.   DOI
19 Wako, H.; Saito, N. J. Phys. Soc. Japan 1978, 44, 1939.   DOI
20 Munoz, V.; Thompson, P. A.; Hofrichter, J.; Eaton, W. A. Nature(London) 1997, 390, 196.   DOI
21 Imparato, A.; Pelizzola, A.; Zamparo, M. Phys. Rev. Lett. 2007, 98, 148102.   DOI
22 Munoz, V.; Henry, E. R.; Hofrichter, J.; Eaton, W. A. Proc. Natl. Acad. Sci. USA 1998, 95, 5872.   DOI
23 Zamparo, M.; Pelizzola, A. Phys. Rev. Lett. 2006, 97, 68106.   DOI
24 Henry, E. R.; Eaton, W. A. J. Chem. Phys. 2004, 307, 163.   DOI
25 Munoz, V.; Eaton, W. A. Proc. Natl. Acad. Sci. USA. 1999, 96, 11311.   DOI
26 Bruscolini, P.; Pelizzola, A. Phys, Rev, Lett. 2002, 88, 258101.   DOI
27 Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol Biol. 1987, 194, 531.   DOI