• Title/Summary/Keyword: In vitro Rumen Fermentation

Search Result 254, Processing Time 0.024 seconds

Effects on the Rumen Microbial Fermentation Characteristics of Lignosulfonate Treated Soybean Meal (Lignosulfonate처리 대두박의 반추위 내 미생물 발효특성에 미치는 영향)

  • Lee, Hun-Jong;Lee, Seung-Heon;Bae, Gui-Seck;Park, Je-Hwan;Chang, Moon-Baek
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.413-426
    • /
    • 2010
  • This study was conducted to investigate the effects on fermentation characteristics of rumen microorganism by different types and levels of lignosulfonate treated soybean meal (LSBM) in in vitro test and rumen simulation continuous culture (RSCC) system in dairy cows. The experiment I was control and 12 treatments (each with 3 replications) in vitro test to demonstrate composition of different types of treatments with lignosulfonate (Desulfonate, Na, Ca and solution) and levels (2, 4 and 8%) of soybean meal in the dairy cow diet. LSBM source treatments in the dairy cow diet showed pH value, $NH_3$-N concentration and total VFA concentration lower than control at all levels and incubation times (p<0.05). Dry matter digestibility of LSBM source treatments showed lower than control (p<0.05). Gas production and rumen microbial synthesis was decreased by rumen microbial fermentation for incubation times. Undegradable protein (UDP) concentration of all LSBM treatments was decreased for incubation times, and significantly higher than control (p<0.05). In the experiment II compared diets of the control, LSBM Na 2%, LSBM Sol 2%, which are high performance to undegradable protein (UDP) concentration experiment I in vitro test, and heated treatment lignosulfonate (LSBM Heat) 2% in the dairy cow diet from four station RSCC system ($4{\times}4$ Latin square). A rumen microbial fermentation characteristic was stability during 12~15 days of experimental period in all treatments. The pH value of LSBM treatments was higher than control treatment (p<0.05). The $NH_3$-N concentration, VFA concentration and rumen microbial synthesis of LSBM treatments were lower than control (p<0.05). The undegradable protein (UDP) showed LSBM Na 2% (45.28%), LSBM Sol 2% (43.52%) and LSBM Heat 2% (43.49%) higher than control (41.55%), respectively (p<0.05). Those experiments were designed to improve by-pass protein of diet and milk protein in the dairy cows. We will conduct those experiments the in vivo test by LSBM treatments in dairy cows diet.

The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

  • Heo, Wan;Kim, Eun Tae;Cho, Sung Do;Kim, Jun Ho;Kwon, Seong Min;Jeong, Ha Yeon;Ki, Kwang Seok;Yoon, Ho Baek;Ahn, Young Dae;Lee, Sung Sill;Kim, Young Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

Influence of Transgenic Corn on the In vitro Rumen Microbial Fermentation

  • Sung, Ha Guyn;Min, Dong Myung;Kim, Dong Kyun;Li, De Yun;Kim, Hyun Jin;Upadhaya, Santi Devi;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1761-1768
    • /
    • 2006
  • In this study, the comparative effects of transgenic corn (Mon 810 and Event 176) and isogenic corn (DK729) were investigated for their influence on in vitro rumen fermentation. This study consisted of three treatments with 0.25 g rice straw, 0.25 g of corn (Mon810/Event176/DK 729) mixed with 30 ml rumen fluid-basal medium in a serum bottle. They were prepared in oxygen free conditions and incubated at $39^{\circ}C$ in a shaking incubator. The influence of transgenic corn on the number of bacterial population, F. succinogenes (cellulolytic) and S. bovis (amylolytic), was quantified using RT-PCR. Fermentative parameters were measured at 0, 2, 4, 8, 12 and 24 h and substrate digestibility was measured at 12 and 24 h. No significant differences were observed in digestibility of dry matter, NDF, ADF at 12 and 24 h for both transgenic and isogenic form of corns (p>0.05) as well as in fermentative parameters. Fluid pH remained unaffected by hybrid trait and decreased with VFA accumulation as incubation time progressed. No influence of corn trait itself was seen on concentration of total VFA, acetic, propionic, butyric and valeric acids. There were no significant differences (p<0.05) in total gas production, composition of gas (methane and hydrogen) at all times of sampling, as well as in NH3-N production. Bacterial quantification using RT-PCR showed that the population number was not affected by transgenic corn. From this study it is concluded that transgenic corn (Mon810 and Event 176) had no adverse effects on rumen fermentation and digestibility compared to isogenic corn. However, regular monitoring of these transgenic feeds is needed by present day researchers to enable consumers with the option to select their preferred food source for animal or human consumption.

Effects of Dietary Allium fistulosum L. and Tannic Acid on in vitro Ruminal Fermentation Characteristics and Methane Emission (국내산 파(Allium fistulosum L.)와 탄닌산을 이용한 사료첨가제가 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin-Ja;Eom, Jun-Sik;Kim, Hyun-Sang;Kim, Hyeong-Suk;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.775-787
    • /
    • 2018
  • This study was conducted to investigate for the natural methane emission inhibitor as a feed additive no adversely effect on rumen fermentation. Five different Control (Wheat barn (0.05 g), MRA(Methane Reduction Additive)-1 (Allium fistulosum L. (0.05 g)), MRA-2 (Sodium Lauryl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), MRA-3 (Sodium Dodecyl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), and MRA-4 (Allium fistulosum L. (0.02 g) + Tannic acid (0.02 g) + Wheat barn (0.01 g) mixed) contents were used to perform 3, 6, 9, 12, 24 and 48 h incubation for in vitro fermentation. Ruminal pH values were ranged within normal ruminal microbial fermentation. Dry matter digestibility was not significantly different across the treatments during the whole fermentation time. Also, the result of microbial growth had no adversely effect on during the whole fermentation time. At 24 h, methane emission was significantly lower (P<0.05) than all treatments except to MRA-1. Especially, MRA-4 carbon dioxide emission was significantly lower (P<0.05) than control at 9, 24 and 48 h incubation. In addition MRA-4 propionate concentration was significantly higher (P<0.05) than control at 24 h incubation. The result of RT-PCR Ciliate-associated methanogens were significantly lower (P<0.05) at MRA-1, MRA-3 and MRA-4 than control at 24 h incubation. Based on the present results, MRA-4 could be suggestible methane emission inhibitor as a natural feed additive.

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.

Influence of Various Sources of Non-Protein Nitrogenous Sources on In vitro Fermentation Patterns of Rumen Microbes

  • Ali, C.S.;Khaliq, T.;Sarwar, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.357-363
    • /
    • 1997
  • The effect of replacement of cotton seed meal (CSM), with various levels and sources of non-protein nitrogenous (NPN), substances on in vitro ruminal fermentation were studied. Cotton seed meal, in control ration provided nitrogen equivalent to 12.5 percent crude protein while in experimental ration was replaced at 30, 50 & 70 percent levels with urea, diammonium phosphate (DAP) and biuret, respectively. The results of incubation upto 48 hours indicated an improvement in digestibility by replacement of CSM with urea and biuret upto 50 percent protein equivalent, but not with DAP. Bacterial count from cultures containing 50% nitrogen from biuret was significantly higher than DAP, urea and CSM. Various sources of nitrogen produced $NH_3-N$ in increasing order of CSM, biuret, DAP and urea. Increasing levels of NPN resulted in progressive increase in the levels of $NH_3-N$. The levels of various NPN sources had no effect on pH. However, the pH values determined for urea and CSM were higher than biuret and DAP.

Effects of Synchronicity of Carbohydrate and Protein Degradation on Rumen Fermentation Characteristics and Microbial Protein Synthesis

  • Seo, J.K.;Kim, M.H.;Yang, J.Y.;Kim, H.J.;Lee, C.H.;Kim, K.H.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.358-365
    • /
    • 2013
  • A series of in vitro studies were carried out to determine i) the effects of enzyme and formaldehyde treatment on the degradation characteristics of carbohydrate and protein sources and on the synchronicity of these processes, and ii) the effects of synchronizing carbohydrate and protein supply on rumen fermentation and microbial protein synthesis (MPS) in in vitro experiments. Untreated corn (C) and enzyme-treated corn (EC) were combined with soy bean meal with (ES) and without (S) enzyme treatment or formaldehyde treatment (FS). Six experimental feeds (CS, CES, CFS, ECS, ECES and ECFS) with different synchrony indices were prepared. Highly synchronous diets had the greatest dry matter (DM) digestibility when untreated corn was used. However, the degree of synchronicity did not influence DM digestibility when EC was mixed with various soybean meals. At time points of 12 h and 24 h of incubation, EC-containing diets showed lower ammonia-N concentrations than those of C-containing diets, irrespective of the degree of synchronicity, indicating that more efficient utilization of ammonia-N for MPS was achieved by ruminal microorganisms when EC was offered as a carbohydrate source. Within C-containing treatments, the purine base concentration increased as the diets were more synchronized. This effect was not observed when EC was offered. There were significant effects on VFA concentration of both C and S treatments and their interactions. Similar to purine concentrations, total VFA production and individual VFA concentration in the groups containing EC as an energy source was higher than those of other groups (CS, CES and CFS). The results of the present study suggested that the availability of energy or the protein source are the most limiting factors for rumen fermentation and MPS, rather than the degree of synchronicity.

Production, Nutritional Quality and In vitro Methane Production from Andropogon gayanus Grass Harvested at Different Maturities and Preserved as Hay or Silage

  • Ribeiro, G.O. Jr.;Teixeira, A.M.;Velasco, F.O.;Faria, W.G. Junior;Pereira, L.G.R.;Chaves, A.V.;Goncalves, L.C.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.330-341
    • /
    • 2014
  • Andropogon gayanus is an important grass due to its high biomass production, drought tolerance and favorable growth on low fertility acidic soils. Currently, there is little research on the impact of growth stage on the nutritional quality or the degree of $CH_4$ production that may arise from this forage during ruminal fermentation. The objectives of this study were to determine the effects of regrowth stage of A. gayanus on its chemical composition, in vitro production of gas and CH4, as well as in vitro dry matter (DM) digestibility when grown under tropical Brazilian conditions and conserved as hay or as silage. The nutritional value of A. gayanus grass declined with increasing maturity; however digestible DM yield linearly increased. After 112 d of regrowth, A. gayanus produced higher quality silage (higher lactate and lower pH and butyrate content) and higher DM yield. However, the low levels of crude protein at this time would make protein supplementation a necessity for proper rumen fermentation. No differences in $CH_4$ kinetic parameters were found with advancing maturity or preservation method (hay or silage).

Development of a novel endolysin, PanLys.1, for the specific inhibition of Peptostreptococcus anaerobius

  • Joonbeom Moon;Hanbeen Kim;Dongseok Lee;Jakyeom Seo
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1285-1292
    • /
    • 2023
  • Objective: The objective of this study was to develop a novel endolysin (PanLys.1) for the specific killing of the ruminal hyper-ammonia-producing bacterium Peptostreptococcus anaerobius (P. anaerobius). Methods: Whole genome sequences of P. anaerobius strains and related bacteriophages were collected from the National Center for Biotechnology Information database, and the candidate gene for PanLys.1 was isolated based on amino acid sequences and conserved domain database (CDD) analysis. The gene was overexpressed using a pET system in Escherichia coli BL21 (DE3). The lytic activity of PanLys.1 was evaluated under various conditions (dosage, pH, temperature, NaCl, and metal ions) to determine the optimal lytic activity conditions. Finally, the killing activity of PanLys.1 against P. anaerobius was confirmed using an in vitro rumen fermentation system. Results: CDD analysis showed that PanLys.1 has a modular design with a catalytic domain, amidase-2, at the N-terminal, and a cell wall binding domain, from the CW-7 superfamily, at the C-terminal. The lytic activity of PanLys.1 against P. anaerobius was the highest at pH 8.0 (p<0.05) and was maintained at 37℃ to 45℃, and 0 to 250 mM NaCl. The activity of PanLys.1 significantly decreased (p<0.05) after Mn2+ or Zn2+ treatment. The relative abundance of P. anaerobius did not decrease after administration PanLys.1 under in vitro rumen conditions. Conclusion: The application of PanLys.1 to modulate P. anaerobius in the rumen might not be feasible because its lytic activity was not observed in in vitro rumen system.

Effects of the Processing Methods of Forage Rye (Secale cereale) on Rumen Fermentation Characteristics and Greenhouse Gas Emissions In Vitro of Hanwoo (호밀 조사료 가공방법이 한우의 반추위 내 발효특성과 온실가스 발생량에 미치는 영향)

  • Ji Yoon Kim;Seung Min Jeong;Young Ho Joo;Chang Hyun Baeg;Bu Gil Choi;Arrynda Rachma Dyasti Wardani;Sam Churl Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.99-105
    • /
    • 2024
  • This study was conducted to estimate the effects of the forage process on rumen fermentation characteristics and greenhouse gas emissions of rye. Rye was grown at the Taeyoung Livestock farm and harvested at the heading stage. The harvested rye (5 kg) was sub-sampled for fresh forage, hay, and silage in triplicates. The sub-sampled rye was freeze-dried or air-dried for fresh forage or rye hay, respectively. For rye silage, the sub-sampled rye forage was ensiled into a 10 L mini bucket silo and stored for 90 days. For 72 h rumen incubation, each forage (0.3 g) was placed into the incubation bottle with the rumen mixture (30 mL) in quadruplicates. After the incubation, total gas was measured and sub-sampled for CO2 and CH4 analyses, and the bottle content was centrifuged for in vitro digestibilities of dry matter (IVDMD) and neutral detergent fiber (IVNDFD), and rumen fermentation characteristics. Silage had higher crude protein, crude ash, and acid detergent fiber concentrations than fresh forage and hay but lower non-fiber carbohydrates and relative feed value (p<0.05). And, silage had higher lactic acid bacteria than the other forages but lower pH (p<0.05). After 72 h incubation in the rumen, fresh forage had higher IVDMD and butyrate content than the other forages (p<0.05). However, silage had higher rumen pH and propionate content than the other forages but lower A:P ratio (p<0.05). Regarding greenhouse gases, silage had lowest total gas (mL/g DMD and NDFD) and CH4 (mL/g DMD and NDFD) emissions, while fresh forage had lowest CO2 (mL/g DMD) emission (p<0.05). Therefore, this study concluded that the ensiling process of rye can effectively mitigate greenhouse gas emissions of Hanwoo.