Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11249

Methane Production of Different Forages in In vitro Ruminal Fermentation  

Meale, S.J. (The University of Sydney, Faculty of Veterinary Science)
Chaves, A.V. (The University of Sydney, Faculty of Veterinary Science)
Baah, J. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
McAllister, T.A. (Agriculture and Agri-Food Canada, Lethbridge Research Centre)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.1, 2012 , pp. 86-91 More about this Journal
Abstract
An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.
Keywords
In vitro; Chemical Composition; Forage Leaves; Methane;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 McAllister, T. A., E. K. Okine, G. W. Mathison and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76:231-243.   DOI   ScienceOn
2 Mertens, D. R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. Assoc. Off. Anal. Chem. Int. 85:1217-1240.
3 Boadi, D., C. Benchaar, J. Chiquette and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 84:319-335.   DOI   ScienceOn
4 Boadi, D. A. and K. M. Wittenberg. 2002. Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Can. J. Anim. Sci. 82:201-206.   DOI   ScienceOn
5 Canadian Council on Animal Care. 1993. Guide to the care and use of experimental animals. CCAC, Ottawa, ON, Canada.
6 Carulla, J. E., M. Kreuzer, A. Machmuller and H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 56:961-970.   DOI   ScienceOn
7 Chaves, A. V., L. C. Thompson, A. D. Iwaasa, S. L. Scott, M. E. Olson, C. Benchaar, D. M. Veira and T. A. McAllister. 2006. Effect of pasture type (alfalfa vs. grass) on methane and carbon dioxide production by yearling beef heifers. Can. J Anim. Sci. 86:409-418.   DOI   ScienceOn
8 Demeyer, D. I. and C. J. Van Nevel. 1975. Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In: Digestion and Metabolism in the Ruminant (Ed. I. W. Mcdonald and A. C. I. Warner). The University of New England Publishing Unit, Armidale, NSW, Australia. pp. 366-382.
9 Archimède, H., M. Eugène, C. Marie Magdeleine, M. Boval, C. Martin, D. P. Morgavi, P. Lecomte and M. Doreau. 2011. Comparison of methane production between C3 and C4 grasses and legumes. Anim. Feed Sci. Technol. 166:59-64.   DOI   ScienceOn
10 Association of Official Analytical Chemists (AOAC). 1990. Association of Official Methods of Analysis. AOAC, Arlington, VA, USA.
11 Beauchemin, K. A., T. A. McAllister and S. M. McGinn. 2009. Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 4:1-18.
12 Wilson, J. R. and D. R. Mertens. 1995. Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop. Sci. 35:251-259.   DOI
13 Wang, Y., T. A. McAllister, L. J. Yanke and P. R. Cheeke. 2000. Effect of steroidal saponin from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896.   DOI   ScienceOn
14 Wang, Y., Z. Xu, S. J. Bach and T. A. McAllister. 2008. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim. Feed Sci. Technol. 145:375-395.   DOI   ScienceOn
15 Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39: 971-974.   DOI
16 SAS Institute, Inc. 2011. $SAS OnlineDoc^{\circledR}$ 9.1.3. SAS Institute Incorporation. Cary, NC, USA.
17 Njidda, A. A. and A. Nasiru. 2010. In vitro gas production and dry mater digestibility of tannin-containing forges of semi-arid region of north-eastern Nigeria. Pakistan J. Nutr. 9:60-66.   DOI
18 Pinares-Patino, C. S., M. J. Ulyatt, G. C. Waghorn, K. R. Lassey, T. N. Barry, C. W. Holmes and D. E. Johnson. 2003. Methane emission by alpaca and sheep fed on lucerne hay or grazed on pastures of perennial ryegrass/white clover or birdsfoot trefoil. J. Agric. Sci. 140:215-226.   DOI   ScienceOn
19 Robertson, J. B. and P. J. Van Soest. 1981. The detergent system of analysis. p. 123-158. In: The Analysis of Dietary Fibre in Food (Ed. W. P. T. James and O. Theander). Marcel Dekker, New York, NY, USA. Chapter 9.
20 Satter, L. D. and L. L. Slyter. 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 199-208.
21 Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Anim. Feed Sci. Technol. 123:403-419.   DOI   ScienceOn
22 Valenciaga, D., B. Chongo, R. S. Herrera, V. Torres, A. Oramas and M. Herrera. 2009. Effect of regrowth age on in vitro dry matter digestibility of Pennisetum purpureum cv. CUBA CT-115. Cuban J. Agric. Sci. 43:79-82.
23 Hariadi, B. T. and B. Santoso. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J. Sci. Food Agric. 90:456-461.
24 VanKessel, J. A. S. and J. B. Russell. 1996. The effect of pH on ruminal methanogenesis. FEMS Microbiol. Ecol. 20:205-210.   DOI
25 Waghorn, G. 2008. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production-Progress and challenges. Anim. Feed Sci. Technol. 147:116-139.   DOI   ScienceOn
26 Grainger, C., T. Clarke, K. A. Beauchemin, S. M. McGinn and R. J. Eckard. 2008. Supplementation with whole cottonseed reduces methane emissions and can profitably increase milk production of dairy cows offered a forage and cereal grain diet. Aust. J. Exp. Agric. 48:73-76.   DOI   ScienceOn
27 Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, P. R. Cheeke and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92:2809-2821.   DOI   ScienceOn
28 Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer and F. Leiber. 2011. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243.   DOI   ScienceOn
29 Johnson, D. E., K. A. Johnson, G. M. Ward and M. E. Branine. 2000. Ruminants and other animals. In: Atmospheric methane: Its role in the global environment (Ed. M. A. K. Kakil). Springer-Verlag, Berlin, Germany. pp. 112-133.
30 Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.
31 Leng, R. A. 1993. Quantitative ruminant nutrition - a green science. Aust. J. Agric. Res. 44:363-380.   DOI   ScienceOn
32 Fedorak, P. M. and S. E. Hrudey. 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environ.Technol. Lett. 4:425-432.   DOI   ScienceOn
33 Doane, P. H, P. Schofield and A. N. Pell. 1997. Neutral detergent fibre disappearance and gas and volatile fatty production during the in vitro fermentation of six forages. J. Anim. Sci. 75:3342-3352.
34 Durmic, Z., P. Hutton, D. K. Revell, J. Emms, S. Hughes and P. E. Vercoe. 2010. In vitro fermentative traits of Australian woody perennial plant species that may be considered as potential sources of feed for grazing ruminants. Anim. Feed Sci. Technol. 160:98-109.   DOI   ScienceOn