Browse > Article
http://dx.doi.org/10.11625/KJOA.2018.26.4.775

Effects of Dietary Allium fistulosum L. and Tannic Acid on in vitro Ruminal Fermentation Characteristics and Methane Emission  

Lee, Shin-Ja (경상대학교 농업생명과학연구원&중점연구소)
Eom, Jun-Sik (경상대학교 응용생명과학부(BK21Plus))
Kim, Hyun-Sang (경상대학교 응용생명과학부(BK21Plus))
Kim, Hyeong-Suk (경상대학교 응용생명과학부(BK21Plus))
Lee, Sung-Sill (경상대학교 응용생명과학부(BK21Plus)&농업생명과학연구원&중점연구소)
Publication Information
Korean Journal of Organic Agriculture / v.26, no.4, 2018 , pp. 775-787 More about this Journal
Abstract
This study was conducted to investigate for the natural methane emission inhibitor as a feed additive no adversely effect on rumen fermentation. Five different Control (Wheat barn (0.05 g), MRA(Methane Reduction Additive)-1 (Allium fistulosum L. (0.05 g)), MRA-2 (Sodium Lauryl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), MRA-3 (Sodium Dodecyl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), and MRA-4 (Allium fistulosum L. (0.02 g) + Tannic acid (0.02 g) + Wheat barn (0.01 g) mixed) contents were used to perform 3, 6, 9, 12, 24 and 48 h incubation for in vitro fermentation. Ruminal pH values were ranged within normal ruminal microbial fermentation. Dry matter digestibility was not significantly different across the treatments during the whole fermentation time. Also, the result of microbial growth had no adversely effect on during the whole fermentation time. At 24 h, methane emission was significantly lower (P<0.05) than all treatments except to MRA-1. Especially, MRA-4 carbon dioxide emission was significantly lower (P<0.05) than control at 9, 24 and 48 h incubation. In addition MRA-4 propionate concentration was significantly higher (P<0.05) than control at 24 h incubation. The result of RT-PCR Ciliate-associated methanogens were significantly lower (P<0.05) at MRA-1, MRA-3 and MRA-4 than control at 24 h incubation. Based on the present results, MRA-4 could be suggestible methane emission inhibitor as a natural feed additive.
Keywords
Allium fistulosum L; carbon dioxide; methane; rumen; tannic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Patra, A. K. and J. Saxena. 2009. Dietary Phytochemicals as Rumen Modifiers: A Review of the Effects on Microbial Populations. Anton. Van. Leeuwen. 96(4): 363-375.   DOI
2 Perez-Fonseca, A., Y. Alcala-Canto, A. Z. M. Salem, and A. B. Alberti-Navarro. 2016. Anticoccidial Efficacy of Naringenin and a Grapefruit Peel Extract in Growing Lambs Naturally-Infected with Eimeria spp. Vet. Parasitol. 232: 58-65.   DOI
3 Santra, A., S. A. Karim, and O. H. Chaturvedi. 2007. Rumen Enzyme Profile and Fermentation Characteristics in Sheep as Affected by Treatment with Sodium Lauryl Sulfate as Defaunating Agent and Presence of Ciliate Protozoa. Small. Ruminant. Res. 67(2-3): 126-137.   DOI
4 Skillman, L. C., A. F. Toovey, A. J. Williams, and A. D. G. Wright. 2006. Development and Validation of a Real-Time PCR Method to Quantify Rumen Protozoa and Examination of Variability Between Entodinium Populations in Sheep Offered a Hay-Based Diet. Appl. Environ. Microbiol. 72: 200-206.   DOI
5 Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of Condensed Tannins from Leucaena on Methane Production, Rumen Fermentation and Populations of Methanogens and Protozoa in vitro. Anim. Feed. Sci. Tech. 169: 185-193.   DOI
6 Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 48: 185-197.   DOI
7 Abu-Lafi, S., J. W. Dembicki, P. Goldshlag, L. O. Hanus, and V. M. Dembitsky. 2004. The Use of the 'Cryogenic' GC/MS and on-Column Injection for Study of Organosulfur Compounds of the Allium Sativum. J. Food. Compost. Anal. 17(2): 235-245.   DOI
8 Wagorn, G. 2008. Beneficial and Detrimental Effects of Dietary Condensed Tannins for Sustainable Sheep and Goat Production - Progress and Challenges. Anim. Feed. Sci. Technol. 147: 116-139.   DOI
9 Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer-Verleg New York Inc.
10 Yang, K., C. G. Wei, Y. Zhao, Z. W. Xu, and S. X. Lin. 2017. Effects of Dietary Supplementing Tannic Acid in the Ration of Beef Cattle on Rumen Fermentation, Methane Emission, Microbial Fora and Nutrient Digestibility. J. Anim. Physiol. Anim. Nutr. 101(2): 302-310.   DOI
11 AOAC. 2012. Official Methods of Analysis of AOAC INTERNATIONAL, 19th Edition.
12 Benchaar, C. and H. Greathead. 2011. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Fed. Sci. Technol. 166-167: 338-355.   DOI
13 Grobner, M. A., D. E. Johnson, S. R. Goodall, and D. A. Benz. 1982. Sarsaponin Effects on in vitro Continuous Flow Fermentation of a High Grain Diet. J. Anim. Sci. 33: 64-66.
14 Denman, S. E. and C. S. McSweeney. 2006. Development of a Real-Time PCR Assay for Monitoring Anaerobic Fungal and Cellulolytic Bacterial Populations within the Rumen. FEMS. Microbiol. Ecol. 58: 572-582.   DOI
15 Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and Diversity Analysis of Ruminal Methanogenic Populations in Response to the Antimethanogenic Compound Bromochloromethane. FEMS. Microbiol. Ecol. 62: 313-322.   DOI
16 Duncan, D. B. 1955. Multiple Range and Multiple F test. Biometrics. 11: 1-6.   DOI
17 Ha, J. K., S. S. Lee, Y. S. Moon, C. H. Kim, S. W. Seo, M. K. Beak, S. S. Lee, S. Y. Lee, W. S. Lee, J. S. Jang, and N. J. Choi. 2013. Ruminant Nutrition and Physiology. Seoul National University press.
18 IPCC (Intergovernment Panel on Climate Change). 2001. The scientific basis. Cambridge, UK; Cambridge University Press.
19 Irene, M. H. 2006. Unravelling the Conundrum of Tannins in Animal Nutrition and Health(Review). J. Sci. Food. Agric. 86: 2010-2037.   DOI
20 Kim, D. R., J. J. Ha, J. T. Kim, and Y. H. Song. 2011. Evaluation on the greenhouse gas emission according to the intake levels of total mixed rations of hanwoo Cow. J. Anim. Sci. & Technol. (Kor). 53: 475-480.   DOI
21 Kim, H. J., and H. S. Chun. 1999. Biological Functions of Organosulfur Compounds in Allium Vegetables. J. Korean Soc. Food. Sci. Nutr. 28: 1412-1423.
22 McAllister, T. A., K. Stanford, H. D. Bae, R. J. Treacher, A. N. Hristov, J. Baah, J. A. Shelford, and K.-J. Cheng 2000. Effect of a Surfactant and Exogenous Enzymes on Digestibility of Feed and on Growth Performance and Carcass Traits of Lambs. Can. J. Anim. Sci. 80(1): 35-44.   DOI
23 Busquet, M., S. Calsamiglia, A. Ferret, M. Carro, and C. Kamel. 2005. Effect of Garlic Oil and Four of its Compounds on Rumen Microbial Fermentation. J. Dairy. Sci. 88(12): 4393-4404.   DOI
24 Kim, M. S., S. H. Yang, Y. K. Oh, and K. H. Park. 2016. Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990-2013.
25 Koike, S. and Y. Kobayashi. 2001. Development and Use of Competitive PCR Assays for the Rumen Cellulolytic Bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS. Microbiol. Ecol. 204: 361-366.   DOI
26 Lee, S. K., S. J. Lee, I. D. Lee, H. S. Kim, D. S. Oh, J. S. Eom, J. H. Lim, and S. S. Lee. 2015. Effects of Tannin-Riching Plant Extracts on Rumen Fermentation, Microbial Growth and Methane Emission. J. Agric. Life. Sci. 49(5): 195-210.   DOI
27 McAllister, T. A. and C. J. Newbold. 2008. Redirecting Rumen Fermentation to Reduce Methanogenesis (Review). Aust. J. Exp. Agric. 48(2): 7-13.   DOI
28 McDougall, E. I. 1948. Studies on Ruminant Saliva. 1. The Composition and Output of Sheep's Saliva. Biochem. J. 43: 99.   DOI
29 McGinn, S. M., K. A. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane Emissions from Beef Cattle: Effects of Monensin, Sunflower Oli, Enzymes, Yeast, and Fumaric Acid. J. Amin. Sci. 82(11): 3346-3356.