DOI QR코드

DOI QR Code

Effects of Dietary Allium fistulosum L. and Tannic Acid on in vitro Ruminal Fermentation Characteristics and Methane Emission

국내산 파(Allium fistulosum L.)와 탄닌산을 이용한 사료첨가제가 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향

  • 이신자 (경상대학교 농업생명과학연구원&중점연구소) ;
  • 엄준식 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 김현상 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 김형석 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 이성실 (경상대학교 응용생명과학부(BK21Plus)&농업생명과학연구원&중점연구소)
  • Received : 2018.11.05
  • Accepted : 2018.11.20
  • Published : 2018.11.30

Abstract

This study was conducted to investigate for the natural methane emission inhibitor as a feed additive no adversely effect on rumen fermentation. Five different Control (Wheat barn (0.05 g), MRA(Methane Reduction Additive)-1 (Allium fistulosum L. (0.05 g)), MRA-2 (Sodium Lauryl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), MRA-3 (Sodium Dodecyl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), and MRA-4 (Allium fistulosum L. (0.02 g) + Tannic acid (0.02 g) + Wheat barn (0.01 g) mixed) contents were used to perform 3, 6, 9, 12, 24 and 48 h incubation for in vitro fermentation. Ruminal pH values were ranged within normal ruminal microbial fermentation. Dry matter digestibility was not significantly different across the treatments during the whole fermentation time. Also, the result of microbial growth had no adversely effect on during the whole fermentation time. At 24 h, methane emission was significantly lower (P<0.05) than all treatments except to MRA-1. Especially, MRA-4 carbon dioxide emission was significantly lower (P<0.05) than control at 9, 24 and 48 h incubation. In addition MRA-4 propionate concentration was significantly higher (P<0.05) than control at 24 h incubation. The result of RT-PCR Ciliate-associated methanogens were significantly lower (P<0.05) at MRA-1, MRA-3 and MRA-4 than control at 24 h incubation. Based on the present results, MRA-4 could be suggestible methane emission inhibitor as a natural feed additive.

본 연구는 반추동물의 메탄 감소에 효과가 있는 합성첨가제를 대체 할 수 있는 천연첨가제를 찾고자 연구를 실시하였다. 첨가제인 MRA-1(파), MRA-2 (SLS), MRA-3 (SDS), MRA-4(파+탄닌산)를 만들어 발효시간대별(3, 6, 9, 12, 24 및 48 h) in vitro 시험을 실시하였다. pH는 발효시간동안 적정범위였으며, 건물소화율은 모든 발효시간대별 모든 처리구에서 대조구와 유의적(P>0.05)인 차이를 보이지 않았고, 미생물성장량에도 부정적인 영향을 미치지 않았다. 메탄 발생량은 발효 24시간대 MRA-1구를 제외한 나머지 처리구에서 대조구에 비해 유의적(P<0.05)으로 낮게 측정되었으며, 특히 이산화탄소 발생량은 MRA-4 첨가구에서 발효 9, 24, 48시간대에서 유의적(P<0.05)으로 낮았다. 메탄생성량 감소에 영향이 있는 프로피온산 함량은 발효 24시간대 MRA-4구에서 대조구에 비해 유의적(P<0.05)으로 높았다. Ciliate-associated methanogens은 발효 24시간대 MRA-1, MRA-3 및 MRA-4구에서 대조구에 비해 유의적(P<0.05)으로 낮게 측정되었다. 따라서 파와 탄닌산은 반추위 내 메탄 저감 효과가 있는 합성첨가제를 대체 할 수 있어 반추동물용 천연 메탄 저감제로서의 활용 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Abu-Lafi, S., J. W. Dembicki, P. Goldshlag, L. O. Hanus, and V. M. Dembitsky. 2004. The Use of the 'Cryogenic' GC/MS and on-Column Injection for Study of Organosulfur Compounds of the Allium Sativum. J. Food. Compost. Anal. 17(2): 235-245. https://doi.org/10.1016/j.jfca.2003.09.002
  2. AOAC. 2012. Official Methods of Analysis of AOAC INTERNATIONAL, 19th Edition.
  3. Benchaar, C. and H. Greathead. 2011. Essential Oils and Opportunities to Mitigate Enteric Methane Emissions from Ruminants. Anim. Fed. Sci. Technol. 166-167: 338-355. https://doi.org/10.1016/j.anifeedsci.2011.04.024
  4. Busquet, M., S. Calsamiglia, A. Ferret, M. Carro, and C. Kamel. 2005. Effect of Garlic Oil and Four of its Compounds on Rumen Microbial Fermentation. J. Dairy. Sci. 88(12): 4393-4404. https://doi.org/10.3168/jds.S0022-0302(05)73126-X
  5. Denman, S. E. and C. S. McSweeney. 2006. Development of a Real-Time PCR Assay for Monitoring Anaerobic Fungal and Cellulolytic Bacterial Populations within the Rumen. FEMS. Microbiol. Ecol. 58: 572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  6. Denman, S. E., N. W. Tomkins, and C. S. McSweeney. 2007. Quantitation and Diversity Analysis of Ruminal Methanogenic Populations in Response to the Antimethanogenic Compound Bromochloromethane. FEMS. Microbiol. Ecol. 62: 313-322. https://doi.org/10.1111/j.1574-6941.2007.00394.x
  7. Duncan, D. B. 1955. Multiple Range and Multiple F test. Biometrics. 11: 1-6. https://doi.org/10.2307/3001478
  8. Grobner, M. A., D. E. Johnson, S. R. Goodall, and D. A. Benz. 1982. Sarsaponin Effects on in vitro Continuous Flow Fermentation of a High Grain Diet. J. Anim. Sci. 33: 64-66.
  9. Ha, J. K., S. S. Lee, Y. S. Moon, C. H. Kim, S. W. Seo, M. K. Beak, S. S. Lee, S. Y. Lee, W. S. Lee, J. S. Jang, and N. J. Choi. 2013. Ruminant Nutrition and Physiology. Seoul National University press.
  10. IPCC (Intergovernment Panel on Climate Change). 2001. The scientific basis. Cambridge, UK; Cambridge University Press.
  11. Irene, M. H. 2006. Unravelling the Conundrum of Tannins in Animal Nutrition and Health(Review). J. Sci. Food. Agric. 86: 2010-2037. https://doi.org/10.1002/jsfa.2577
  12. Kim, D. R., J. J. Ha, J. T. Kim, and Y. H. Song. 2011. Evaluation on the greenhouse gas emission according to the intake levels of total mixed rations of hanwoo Cow. J. Anim. Sci. & Technol. (Kor). 53: 475-480. https://doi.org/10.5187/JAST.2011.53.5.475
  13. Kim, H. J., and H. S. Chun. 1999. Biological Functions of Organosulfur Compounds in Allium Vegetables. J. Korean Soc. Food. Sci. Nutr. 28: 1412-1423.
  14. Kim, M. S., S. H. Yang, Y. K. Oh, and K. H. Park. 2016. Estimation of Greenhouse Gas Emissions from Korean Livestock During the Period 1990-2013.
  15. Koike, S. and Y. Kobayashi. 2001. Development and Use of Competitive PCR Assays for the Rumen Cellulolytic Bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS. Microbiol. Ecol. 204: 361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  16. Lee, S. K., S. J. Lee, I. D. Lee, H. S. Kim, D. S. Oh, J. S. Eom, J. H. Lim, and S. S. Lee. 2015. Effects of Tannin-Riching Plant Extracts on Rumen Fermentation, Microbial Growth and Methane Emission. J. Agric. Life. Sci. 49(5): 195-210. https://doi.org/10.14397/jals.2015.49.5.195
  17. McAllister, T. A. and C. J. Newbold. 2008. Redirecting Rumen Fermentation to Reduce Methanogenesis (Review). Aust. J. Exp. Agric. 48(2): 7-13. https://doi.org/10.1071/EA07218
  18. McAllister, T. A., K. Stanford, H. D. Bae, R. J. Treacher, A. N. Hristov, J. Baah, J. A. Shelford, and K.-J. Cheng 2000. Effect of a Surfactant and Exogenous Enzymes on Digestibility of Feed and on Growth Performance and Carcass Traits of Lambs. Can. J. Anim. Sci. 80(1): 35-44. https://doi.org/10.4141/A99-053
  19. McDougall, E. I. 1948. Studies on Ruminant Saliva. 1. The Composition and Output of Sheep's Saliva. Biochem. J. 43: 99. https://doi.org/10.1042/bj0430099
  20. McGinn, S. M., K. A. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane Emissions from Beef Cattle: Effects of Monensin, Sunflower Oli, Enzymes, Yeast, and Fumaric Acid. J. Amin. Sci. 82(11): 3346-3356.
  21. Patra, A. K. and J. Saxena. 2009. Dietary Phytochemicals as Rumen Modifiers: A Review of the Effects on Microbial Populations. Anton. Van. Leeuwen. 96(4): 363-375. https://doi.org/10.1007/s10482-009-9364-1
  22. Perez-Fonseca, A., Y. Alcala-Canto, A. Z. M. Salem, and A. B. Alberti-Navarro. 2016. Anticoccidial Efficacy of Naringenin and a Grapefruit Peel Extract in Growing Lambs Naturally-Infected with Eimeria spp. Vet. Parasitol. 232: 58-65. https://doi.org/10.1016/j.vetpar.2016.11.009
  23. Santra, A., S. A. Karim, and O. H. Chaturvedi. 2007. Rumen Enzyme Profile and Fermentation Characteristics in Sheep as Affected by Treatment with Sodium Lauryl Sulfate as Defaunating Agent and Presence of Ciliate Protozoa. Small. Ruminant. Res. 67(2-3): 126-137. https://doi.org/10.1016/j.smallrumres.2005.08.028
  24. Skillman, L. C., A. F. Toovey, A. J. Williams, and A. D. G. Wright. 2006. Development and Validation of a Real-Time PCR Method to Quantify Rumen Protozoa and Examination of Variability Between Entodinium Populations in Sheep Offered a Hay-Based Diet. Appl. Environ. Microbiol. 72: 200-206. https://doi.org/10.1128/AEM.72.1.200-206.2006
  25. Tan, H. Y., C. C. Sieo, N. Abdullah, J. B. Liang, X. D. Huang, and Y. W. Ho. 2011. Effects of Condensed Tannins from Leucaena on Methane Production, Rumen Fermentation and Populations of Methanogens and Protozoa in vitro. Anim. Feed. Sci. Tech. 169: 185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
  26. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 48: 185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  27. Wagorn, G. 2008. Beneficial and Detrimental Effects of Dietary Condensed Tannins for Sustainable Sheep and Goat Production - Progress and Challenges. Anim. Feed. Sci. Technol. 147: 116-139. https://doi.org/10.1016/j.anifeedsci.2007.09.013
  28. Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer-Verleg New York Inc.
  29. Yang, K., C. G. Wei, Y. Zhao, Z. W. Xu, and S. X. Lin. 2017. Effects of Dietary Supplementing Tannic Acid in the Ration of Beef Cattle on Rumen Fermentation, Methane Emission, Microbial Fora and Nutrient Digestibility. J. Anim. Physiol. Anim. Nutr. 101(2): 302-310. https://doi.org/10.1111/jpn.12531