• 제목/요약/키워드: In vitro Gas Production

검색결과 259건 처리시간 0.027초

Use of In vitro Gas Production Technique to Investigate Interactions between Rice Straw, Wheat Straw, Maize Stover and Alfalfa or Clover

  • Tang, S.X.;Tayo, G.O.;Tan, Z.L.;Sun, Z.H.;Wang, M.;Ren, G.P.;Han, X.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권9호
    • /
    • pp.1278-1285
    • /
    • 2008
  • Measurement of gas produced during in vitro fermentation was used to investigate the fermentation characteristics and interactions of rice straw, wheat straw or maize stover mixed with alfalfa or clover at proportions of 100:0, 75:25, 50:50, 25:75 and 0:100, respectively. Cumulative gas production was recorded at 2, 4, 8, 12, 16, 24 and 48 h of incubation, and the Gompertz function was used to describe the kinetics of gas production. In vitro dry matter and organic matter disappearances (IVDMD and IVOMD) were determined after 48 h incubation. The rate of gas production of clover was higher (p<0.05) than that of rice straw, wheat straw, maize stover and alfalfa when straws and hays were incubated separately. Increasing the proportion of alfalfa in the straw-alfalfa mixtures increased (p<0.05) the rates, but not the maximum volume of gas production. However, both rate and the maximum volume of gas production were increased (p<0.01) as the proportions of clover increased in the straw-clover mixtures. The cumulative gas production at 48 h, IVDMD and IVOMD showed no consistent interaction effects between different mixtures of cereal straws and hays. The extent of interactive effects was affected by the types of cereal straw, legume hay and their proportions in the mixture. The appropriate combination for the mixture of rice straw or maize stover with leguminous hays was 75:25 and 25:75, respectively. The better combination occurred at a proportion of 50:50 for the mixture of wheat straw and alfalfa. We conclude that the suitable proportion of low-quality straw and high quality legume hay combination should be considered in the ration formulation system of ruminants according to the extent of positive interactive effects.

Effects of Cordyceps militaris Mycelia on In vitro Rumen Microbial Fermentation

  • Yeo, Joon Mo;Lee, Shin Ja;Lee, Sang Min;Shin, Sung Hwan;Lee, Sung Hoon;Ha, Jong K.;Kim, WanYoung;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권2호
    • /
    • pp.201-205
    • /
    • 2009
  • Effects of Cordyceps militaris mycelia on rumen microbial fermentation were determined by measuring in vitro gas production, cellulose digestion and VFA concentrations. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the gas production showed a quadratic increase with the supplementation of C. militaris mycelia; maximum responses were seen with 0.25 g/L supplementation. However, the gas production was significantly lower for the 0.30 g/L supplementation than for the 0.25 g/L supplementation from 9 h to 72 h incubation. The cellulose filter paper (FP) digestion showed a quadratic increase, as did the gas production except at 3 h incubation. The concentration of total VFA was significantly increased by the supplementation of C. militaris mycelia compared with the control treatment; the highest response was also seen with 0.25 g/L supplementation. This was true for responses in the concentration of acetic and propionic acids. As opposed to other responses, the responses of pH to the supplementation of C. militaris mycelia showed a quadratic decrease from 3 h to 36 h incubation. In conclusion, C. militaris mycelia alter the mixed rumen microbial fermentation with increases in the production of gas and VFA, and cellulose FP digestion.

In vitro gas and methane production of some common feedstuffs used for dairy rations in Vietnam and Thailand

  • N. T. D., Huyen;J. Th. Schonewille;W. F. Pellikaan;N. X. Trach;W. H. Hendriks
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.481-491
    • /
    • 2024
  • Objective: This study determined fermentation characteristics of commonly used feedstuffs, especially tropical roughages, for dairy cattle in Southeast Asia. This information is considered relevant in the context of the observed low milk fat content and milk production in Southeast Asia countries. Methods: A total of 29 feedstuffs commonly used for dairy cattle in Vietnam and Thailand were chemically analysed and subjected to an in vitro gas production (GP) test. For 72 h, GP was continuously recorded with fully automated equipment and methane (CH4) was measured at 0, 3, 6, 9, 12, 24, 30, 36, 48, 60, and 72 h of incubation. A triphasic, nonlinear, regression procedure was applied to analyse GP profiles while a monophasic model was used to obtain kinetics related to CH4 production. Results: King grass and VA06 showed a high asymptotic GP related to the soluble- and non-soluble fractions (i.e. A1 and A2, respectively) and had the highest acetate to propionate ratio in the incubation fluid. The proportion of CH4 produced (% of GP at 72 h) was found to be not different (p>0.05) between the various grasses. Among the selected preserved roughages (n = 6) and whole crops (n = 4), sorghum was found to produce the greatest amount of gas in combination with a relatively low CH4 production. Conclusion: Grasses belonging to the genus Pennisetum, and whole crop sorghum can be considered as suitable ingredients to formulate dairy rations to enhance milk fat content in Vietnam/Thailand.

Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on In vitro Fermentation

  • Dung, Dinh Van;Shang, Weiwei;Yao, Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권6호
    • /
    • pp.797-805
    • /
    • 2014
  • The effect of concentrate mixtures with crude protein (CP) levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w) were determined on dry matter (DM) and organic matter (OM) digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA) increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001), however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen ($NH_3$-N) concentration and microbial CP production increased significantly (p<0.05) by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

Fermentation quality and in vitro methane production of sorghum silage prepared with cellulase and lactic acid bacteria

  • Khota, Waroon;Pholsen, Suradej;Higgs, David;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1568-1574
    • /
    • 2017
  • Objective: The effects of lactic acid bacteria (LAB) and cellulase enzyme on fermentation quality, microorganism population, chemical composition and in vitro gas production of sorghum silages were studied. Methods: Commercial inoculant Lactobacillus plantarum Chikuso 1 (CH), local selected strain Lactobacillus casei (L. casei) TH 14 and Acremonium cellulase (AC) were used as additives in sorghum silage preparation. Results: Prior to ensiling Sorghum contained $10^4LAB$ and $10^6cfu/g$ fresh matter coliform bacteria. The chemical compositions of sorghum was 26.6% dry matter (DM), 5.2% crude protein (CP), and 69.7% DM for neutral detergent fiber. At 30 days of fermentation after ensiling, the LAB counts increased to a dominant population; the coliform bacteria and molds decreased to below detectable level. All sorghum silages were good quality with a low pH (<3.5) and high lactic acid content (>66.9 g/kg DM). When silage was inoculated with TH14, the pH value was significantly (p<0.05) lower and the CP content significantly (p<0.05) higher compared to control, CH and AC-treatments. The ratio of in vitro methane production to total gas production and DM in TH 14 and TH 14+AC treatments were significantly (p<0.05) reduced compared with other treatments while in vitro dry matter digestibility and gas production did not differ among treatments. Conclusion: The results confirmed that L. casei TH14 could improve sorghum silage fermentation, inhibit protein degradation and decrease methane production.

Evaluation of Some Aquatic Plants from Bangladesh through Mineral Composition, In Vitro Gas Production and In Situ Degradation Measurements

  • Khan, M.J.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권4호
    • /
    • pp.537-542
    • /
    • 2002
  • A study was conducted to evaluate the nutritive potential value of different aquatic plants: duckweed (Lemna trisulaca), duckweed (Lemna perpusila), azolla (Azolla pinnata) and water-hyacinth (Eichhornia crassipes) from Bangladesh. A wide variability in protein, mineral composition, gas production, microbial protein synthesis, rumen degradable nitrogen and in situ dry matter and crude protein degradability were recorded among species. Crude protein content ranged from 139 to 330 g/kg dry matter (DM). All species were relatively high in Ca, P, Na, content and very rich in K, Fe, Mg, Mn, Cu and Zn concentration. The rate of gas production was highest in azolla and lowest in water-hyacinth. A similar trend was observed with in situ DM degradability. Crude protein degradability was highest in duckweed. Microbial protein formation at 24 h incubation ranged from 38.6-47.2 mg and in vitro rumen degradable nitrogen between 31.5 and 48.4%. Based on the present findings it is concluded that aquatic species have potential as supplementary diet to livestock.

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue

  • Bo, Y.K.;Yang, H.J.;Wang, W.X.;Liu, H.;Wang, G.Q.;Yu, X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권2호
    • /
    • pp.240-247
    • /
    • 2012
  • Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.

Phenolic Composition, Fermentation Profile, Protozoa Population and Methane Production from Sheanut (Butryospermum Parkii) Byproducts In vitro

  • Bhatta, Raghavendra;Mani, Saravanan;Baruah, Luna;Sampath, K.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1389-1394
    • /
    • 2012
  • Sheanut cake (SNC), expeller (SNE) and solvent extractions (SNSE) samples were evaluated to determine their suitability in animal feeding. The CP content was highest in SNSE (16.2%) followed by SNE (14.7%) and SNC (11.6%). However, metabolizable energy (ME, MJ/kg) was maximum in SNC (8.2) followed by SNE (7.9) and SNSE (7.0). The tannin phenol content was about 7.0 per cent and mostly in the form of hydrolyzable tannin (HT), whereas condensed tannin (CT) was less than one per cent. The in vitro gas production profiles indicated similar y max (maximum potential of gas production) among the 3 by-products. However, the rate of degradation (k) was maximum in SNC followed by SNE and SNSE. The $t^{1/2}$ (time taken for reaching half asymptote) was lowest in SNC (14.4 h) followed by SNE (18.7 h) and SNSE (21.9 h). The increment in the in vitro gas volume (ml/200 mg DM) with PEG (polyethylene glycol)-6000 (as a tannin binder) addition was 12.0 in SNC, 9.6 in SNE and 11.0 in SNSE, respectively. The highest ratio of $CH_4$ (ml) reduction per ml of the total gas, an indicator of the potential of tannin, was recorded in SNE (0.482) followed by SNC (0.301) and SNSE (0.261). There was significant (p<0.05) reduction in entodinia population and total protozoa population. Differential protozoa counts revealed that Entodinia populations increased to a greater extent than Holotricha when PEG was added. This is the first report on the antimethanogenic property of sheanut byproducts. It could be concluded that all the three forms of SN byproducts are medium source of protein and energy for ruminants. There is a great potential for SN by-products to be incorporated in ruminant feeding not only as a source of energy and protein, but also to protect the protein from rumen degradation and suppress enteric methanogenesis.

Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

  • Murillo, M.;Herrera, E.;Carrete, F.O.;Ruiz, O.;Serrato, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권10호
    • /
    • pp.1395-1403
    • /
    • 2012
  • The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers… diets. Diet samples were collected with four esophageal cannulated steers ($350{\pm}3$ kg BW); and four ruminally cannulated heifers ($342{\pm}1.5$ kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen ($NH_3N$) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance.

Methane Production of Different Forages in In vitro Ruminal Fermentation

  • Meale, S.J.;Chaves, A.V.;Baah, J.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권1호
    • /
    • pp.86-91
    • /
    • 2012
  • An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on $CH_4$ production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at $55^{\circ}C$ and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall's buffer and rumen fluid were incubated under anaerobic conditions at $39^{\circ}C$ for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, $CH_4$ production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate $CH_4$ emissions without compromising digestion. Grazing of these two species may be a strategy to reduce $CH_4$ emissions however further assessment in in vivo trials and at different stages of maturity is recommended.