DOI QR코드

DOI QR Code

Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on In vitro Fermentation

  • Dung, Dinh Van (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Shang, Weiwei (College of Animal Science and Technology, Nanjing Agricultural University) ;
  • Yao, Wen (College of Animal Science and Technology, Nanjing Agricultural University)
  • Received : 2013.09.11
  • Accepted : 2014.01.13
  • Published : 2014.06.01

Abstract

The effect of concentrate mixtures with crude protein (CP) levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w) were determined on dry matter (DM) and organic matter (OM) digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA) increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001), however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen ($NH_3$-N) concentration and microbial CP production increased significantly (p<0.05) by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

Keywords

References

  1. Agle, M., A. N. Hristov, S. Zaman, C. Schneider, P. M. Ndegwa, and V. K. Vaddella. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93:4211-4222. https://doi.org/10.3168/jds.2009-2977
  2. Association of Official Analytical Chemists (AOAC). 1990. Official Method of Analyis. 15th edn. AOAC international, Arlington, Virginia, USA.
  3. Bannink, A., J. Kogut, J. Dijkstra, J. France, S. Tamminga, and A. M. Van Vuuren. 2000. Modelling production and portal appearance of volatile fatty acids in dairy cows. In Modelling Nutrient Utilization in Farm Animals (Eds. J. P. McNamara, J. France, and D. E. Beever). CAB International, CABI publishing, Wallingford, UK.
  4. Chanthakhoun, V., M. Wanapat, and J. Berg. 2012. Level of crude protein in concentrate supplements influenced rumen characteristic, microbial synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 144:197-204. https://doi.org/10.1016/j.livsci.2011.11.011
  5. Chantiratikul, A., S. Chumpawadee, W. Kanchanamayoon, and P. Chantiratikul. 2009. Effect of dietary protein on nutrient digestibility and nitrogen metabolism in Thai-Indigenous heifers. J. Anim. Vet. Adv. 8:297-300.
  6. Chen, S., P. Paengkoum, X. Xia, and P. Na-Lumpang. 2010. Effects of dietary protein on ruminal fermentation, nitrogen utilization and crude protein maintenance in growing Thai-indigenous beef cattle fed rice straw as roughage. J. Anim. Vet. Adv. 9:2396-2400. https://doi.org/10.3923/javaa.2010.2396.2400
  7. Chumpawadee, S., A. Chantiratikul, V. Rattanaphun, C. Prasert, and K. Koobaew. 2009. Effects of dietary crude protein levels on nutrient digestibility, ruminal fermentation and growth rate in Thai-Indigenous yearling heifers. J. Anim. Vet. Adv. 8: 1131-1136.
  8. Crawford, R. J., W. H. Jr Hoover, C. J. Sniffen, and B. A. Crooker. 1978. Degradation of feedstuff nitrogen in the rumen vs nitrogen solubility in three rumen solvents. J. Anim. Sci. 46:1768-1775.
  9. Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed. Sci. Technol. 111:57-71. https://doi.org/10.1016/S0377-8401(03)00217-7
  10. Ghorbani, B., T. Ghoorchi, H. Amanlou, and S. Zerehdaran. 2011. Effects of using monensin and different levels of crude protein on milk production, blood metabolites and digestion of dairy cows. Asian Australas. J. Anim. Sci. 24:65-72. https://doi.org/10.5713/ajas.2011.90623
  11. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766. https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  12. Krause, K. M. and G. R. Oetzel. 2006. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Anim. Feed Sci. Technol. 126:215-236. https://doi.org/10.1016/j.anifeedsci.2005.08.004
  13. Kumar, S., S. S. Dagar, S. K. Sirohi, R. C. Padhyay, and A. K. Puniya. 2013. Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Ann. Microb. 63:541-545. https://doi.org/10.1007/s13213-012-0501-0
  14. Martin, J. S. and M. M. Martin. 1982. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Oecologia 54:205-211. https://doi.org/10.1007/BF00378394
  15. McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, and C. A. Morgan. 1995. Animal Nutrition. Longman Singapore Publisher (Pte) Ltd., Singapore.
  16. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. Anim. Res. Dev. 28:7-55.
  17. Mills, J. A. N., J. France, and J. Dijkstra. 1999. A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 1. Dietary starch characterisation and ruminal starch digestion. J. Anim. Feed Sci. 8:291-340.
  18. Milis, C. and D. Liamadis. 2007. Effect of protein levels, main protein and non forage fiber source on digestibility, N balance energy value of sheep rations. J. Anim. Vet. Adv. 6:68-75.
  19. Norrapoke, T., M. Wanapat, and S. Wanapat. 2012. Effects of protein level and mangosteen peel pellets (Mago-pel) in concentrate diets on rumen fermentation and milk production in lactating dairy crossbreds. Asian Australas. J. Anim. Sci. 25:971-979. https://doi.org/10.5713/ajas.2012.12053
  20. Orskov, E. R. 1986. Starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624-1633.
  21. Paengkoum, P. and P. Tatsapong. 2009. Effect of different levels of protein on feed intake, digestibility and growth rate of Thai native beef fed pangola grass as roughages. In: Establishment of a Feeding Standard of Beef Cattle and a Feed Database for the Indochinese Peninsula (Eds. S. Oshio, M. Otsuka, and K. Sommart). JIRCAS, Tsukuba, pp. 76-78.
  22. Pina, D. S., S. C. Valadares Filho, L. O. Tedeschi, A. M. Barbosa, and R. F. D. Valadares. 2009. Influence of different levels of concentrate and ruminally undegraded protein on digestive variables in beef heifers. J. Anim. Sci. 87:1058-1067.
  23. Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containing cassava chips and rice straw for lactating dairy cows. Asian Australas. J. Anim. Sci. 18:502-511. https://doi.org/10.5713/ajas.2005.502
  24. Rodriguez, R., M. Mota, C. Castrillo, and M. Fondevila. 2010. In vitro rumen fermentation of the tropical grass Pennisetum purpureum and mixtures with browse legumes: Effects of tannin contents. J. Anim. Physiol. Nutr. 94:696-705. https://doi.org/10.1111/j.1439-0396.2010.01001.x
  25. Shahzad, S. A., N. A. Tauqir, F. Ahmad, M. U. Nisa, M. Sarwar, and M. A. Tipu. 2011. Effect of feeding different dietary protein and energy levels on the performance of 12-15-month old buffalo calves. Trop. Anim. Health Prod. 43:685-694. https://doi.org/10.1007/s11250-010-9753-5
  26. Soltan, Y. A., A. S. Morsy, S. M. A. Sallam, H. Louvandini, and A. L. Abdalla. 2012. Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J. Anim. Feed. Sci. 21:759-772.
  27. Suharti, S., D. A. Astuti, E. Wina, and T. Toharmat. 2011. Rumen microbial population in the in vitro fermentation of different ratios of forage and concentrate in the presence of whole lerak (Sapindus rarak) fruit extract. Asian Australas. J. Anim. Sci. 24:1086-1091. https://doi.org/10.5713/ajas.2011.10409
  28. Tagliapietra, F., M. Cattani, H. H. Hansen, I. K. Hindrichsen, L. Bailoni, and S. Schiavon. 2011. Metabolizable energy content of feeds based on 24 or 48 h in situ NDF digestibility and on in vitro 24 h gas production methods. Anim. Feed Sci. Technol. 170:182-191. https://doi.org/10.1016/j.anifeedsci.2011.09.008
  29. Tahir, M. N., M. Hettaa, M. Larsen, P. Lund, and P. Huhtanena. 2013. In vitro estimations of the rate and extent of ruminal digestion of starch-rich feed fractions compared to in vivo data. Anim. Feed Sci. Technol. 179:36-45. https://doi.org/10.1016/j.anifeedsci.2012.11.006
  30. Thang, C. M., I. Ledin, and J. Bertilsson. 2011. Degradation characteristics and fermentation kinetics of some tropical legumes and cassava foliage/root determined by the in vitro gas production technique. J. Anim. Sci. Technol. 29:40-53.
  31. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A sample gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  32. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Method for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 74: 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  33. Yuangklang, C., K. Vasupen, S. Wongsuthavas, and S. Bureenok. 2010. Effect of protein level on nutrient digestibility and nitrogen utilization in beef cattle. J. Anim. Vet. Adv. 9:1776-1779. https://doi.org/10.3923/javaa.2010.1776.1779
  34. Zicarelli, F., S. Calabro, M. I. Cutrignelli, F. Infascelli, R. Tudisco, F. Bovera, and V. Piccolo. 2011. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J. Sci. Food. Agric. 91:1213-1221. https://doi.org/10.1002/jsfa.4302

Cited by

  1. Effects of Static or Oscillating Dietary Crude Protein Levels on Fermentation Dynamics of Beef Cattle Diets Using a Dual-Flow Continuous Culture System vol.11, pp.12, 2016, https://doi.org/10.1371/journal.pone.0169170
  2. Use of Lysozyme as a Feed Additive on In vitro Rumen Fermentation and Methane Emission vol.29, pp.11, 2016, https://doi.org/10.5713/ajas.16.0575
  3. Effects of different ratios and storage periods of liquid brewer’s yeast mixed with cassava pulp on chemical composition, fermentation quality and in vitro ruminal fermentation vol.30, pp.4, 2016, https://doi.org/10.5713/ajas.16.0218
  4. Effect of dietary protein content on performance, feed efficiency and carcass traits of feedlot Nellore and Angus × Nellore cross cattle at different growth stages vol.156, pp.01, 2018, https://doi.org/10.1017/S0021859617000958
  5. Relationship Linking Dietary Quercetin and Roughage to Concentrate Ratio in Feed Utilization, Ruminal Fermentation Traits and Immune Responses in Korean Indigenous Goats vol.37, pp.1, 2014, https://doi.org/10.5333/kgfs.2017.37.1.10
  6. In vitro ruminal fermentation and enteric methane production of tropical forage added nitrogen or nitrogen plus starch vol.275, pp.None, 2021, https://doi.org/10.1016/j.anifeedsci.2021.114878
  7. The Impact of Feed Supplementations on Asian Buffaloes: A Review vol.11, pp.7, 2014, https://doi.org/10.3390/ani11072033