Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11304

Metabolisable Energy, In situ Rumen Degradation and In vitro Fermentation Characteristics of Linted Cottonseed Hulls, Delinted Cottonseed Hulls and Cottonseed Linter Residue  

Bo, Y.K. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU))
Yang, H.J. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU))
Wang, W.X. (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University (CAU))
Liu, H. (College of Animal Science, Xinjiang Agricultural University)
Wang, G.Q. (College of Animal Science, Xinjiang Agricultural University)
Yu, X. (College of Animal Science, Xinjiang Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.2, 2012 , pp. 240-247 More about this Journal
Abstract
Dietary supplementation with conventional linted cottonseed hulls (LCSH) is a common practice in livestock production all over the world. However, supplementation with mechanically delinted cottonseed hulls (DCSH) and cottonseed linter residue (CLR) is uncommon. Cottonseed by-products, including LCSH, DCSH and CLR, were assessed by chemical analysis, an in situ nylon bag technique, an in vitro cumulative gas production technique and in vitro enzyme procedure. The crude protein (CP) content of CLR (302 g/kg dry matter (DM)) was approximately 3 times that of LCSH and 5 times that of DCSH. The crude fat content was approximately 3 times higher in CLR (269 g/kg DM) than in LCSH and 4 times higher than in DCSH. Neutral detergent fibre (311 g/kg DM) and acid detergent fibre (243 g/kg DM) contents of CLR were less than half those of DCSH or LCSH. Metabolisable energy, estimated by in vitro gas production and chemical analyses, ranked as follows: CLR (12.69 kJ/kg DM)>LCSH (7.32 kJ/kg DM)>DCSH (5.82 kJ/kg DM). The in situ degradation trial showed that the highest values of effective degradability of DM and CP were obtained for CLR (p<0.05). The in vitro disappearance of ruminal DM ranked as follows: CLR>LCSH>DCSH (p<0.05). The lowest digestibility was observed for DCSH with a two-step in vitro digestion procedure (p<0.05). The potential gas production in the batch cultures did not differ for any of the three cottonseed by-product feeds. The highest concentration of total volatile fatty acids was observed in CLR after a 72 h incubation (p<0.05). The molar portions of methane were similar between all three treatments, with an average gas production of 22% (molar). The CLR contained a higher level of CP than did LCSH and DCSH, and CLR fermentation produced more propionate. The DCSH and LCSH had more NDF and ADF, which fermented into greater amounts of acetate.
Keywords
Cottonseed By-products; In situ Degradation; In vitro Fermentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bergman, E. N. 1990. Energy contribution of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590.
2 Bertrand, J. A., T. Q. Sudduth, A. Condon, T. C. Jenkins and M. C. Calhoun. 2005. Nutrient content of whole cottonseed. J. Dairy Sci. 88:1470-1477.   DOI   ScienceOn
3 Cherry, J. R. 1983. Cotton seed oil. J. Am. Oil Chem. Soc. 60: 360-367.   DOI
4 Chriyaa, A., K. J. Moore and S. S. Waller. 1997. Browse foliage and annual legume pods as supplements to wheat straw for sheep. Anim. Feed Sci. Technol. 62:85-96.
5 Coppock, C. E., J. K. Lanham and J. I. Home. 1987. A review of the nutritive value and utilization of whole cottonseed, cottonseed meal and associated by-products by dairy cattle. Anim. Feed Sci. Technol. 18:89-129.   DOI   ScienceOn
6 Coppock, C. E., J. R. Moya, J. W. West, D. H. Nav, J. M. Labore and C. E. Gates. 1985. Effect of lint on whole cottonseed passage and digestibility and diet choice on intake of whole cottonseed by Holstein cows. J. Dairy Sci. 68:1198-1206.   DOI   ScienceOn
7 DeRamus, H. A., T. C. Clement, D. D. Giampola and P. C. Dickison. 2003. Methane emissions of beef cattle on forages efficiency of grazing management systems. J. Environ. Qual. 32:269-277.   DOI   ScienceOn
8 Dohme, F., A. Machmueller, A. Wasserfallen and M. Kreuzer. 2001. Ruminal methanogenesis as influenced by individual fatty acids supplemented to complete ruminant diets. Lett. Appl. Microbiol. 32:47-51.   DOI   ScienceOn
9 Fadel, J. G. 1999. Quantitative analyses of selected plant by-product feedstuffs, a global perspective. Anim. Feed Sci. Technol. 79:255-268.   DOI   ScienceOn
10 Abate, A. 1980. In vitro estimation of the energy content of some feeds commonly fed to livestock in Kenya. East Afr. Agric. Forest. J. 45:255-260.
11 AOAC. 1999. Official methods of analysis, 16th edn. Association of Analytical Chemists, Washington DC, USA.
12 National Research Council. 1989. Nutrient requirements of dairy cattle. 6th rev. edn. Natl. Acad. Sci. Washington, DC, USA. 157.
13 Tilley, J. M. A. and R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage crops. J. Br. Grassland Soc. 18: 104-111.   DOI
14 Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
15 Verdouw, H., C. J. A. Van Echteld and E. M. J. Dekkers. 1978. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 12:399-402.   DOI   ScienceOn
16 Zhang, D. F. and H. J. Yang. 2011. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds, pyromellitic diimide and, 2-bromoethanesulphonate. Anim. Feed Sci. Technol. 163:20-32.   DOI   ScienceOn
17 Moreira, V. R., L. D. Satter and B. Harding. 2004. Comparison of conventional linted cottonseed and mechanically delinted cottonseed in diets for dairy cows. J. Dairy Sci. 87:131-138.   DOI   ScienceOn
18 Orskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb) 92:499-503.   DOI
19 Oltjen, R. R., D. A. Dinius and H. K. Goering. 1977. Performance of steers fed crop residues supplemented with nonprotein nitrogen, minerals, protein and monensin. J. Anim. Sci. 45:1442-1452.
20 Orskov, E. R. 1975. Manipulation of rumen fermentation for maximum food utilization. World Rev. Nutr. Diet. 22:152-182.
21 Palmquist, D. L. 1995. Digestibility of cotton lint fiber and whole oilseeds by ruminal microorganisms. Anim. Feed Sci. Technol. 56:231-242.   DOI   ScienceOn
22 Robinson, P. H., G. Getachew and E. J. De Peters. 2001. Influence of variety and storage for up to 22 days on nutrient composition and gossypol level of Pima cottonseed (Gossypium spp.). Anim. Feed Sci. Technol. 91:149-156.   DOI   ScienceOn
23 SAS. 1999. Statistical analytical system (SAS) users guide: statistics, version 8.2. Statistical Analysis Institute, Cary, NC. USA.
24 Sullivan, J. L., J. T. Huber, R. L. Price and J. M. Harper. 1993. Comparison of digestibility, nutritive value, and storage characteristics of different forms of cottonseed in diets fed to lactating dairy cows. J. Anim. Sci. 71:2837-2842.
25 The Ministry of Agriculture of the People's Republic of China 2010. China Agricultural Yearbook in 2009. China Agriculture Press, Beijing (in Chinese).
26 Hsu, J. T., D. B. Faulkner, K. A. Garleb, R. A. Barclay, Jr., G. C. Fahey Jr. and L. L. Berger. 1987. Evaluation of corn fiber, cottonseed hulls, oat hulls and soybean hulls as roughage sources for ruminants. J. Anim. Sci. 65:244-255.
27 INRA. 1988. Alimentation des bovins, ovins et caprins. Institut Nationale de la Recherche Agronomique, Paris, France.
28 Kromer, G. W. 1977. In glandless cotton: its significance, status, and prospects. Proceedings of a conference. Dallas, TX, Agricultural Research Service, US Department of Agriculture, p. 1.
29 Johnson, K. A. and D. E. Johnson. 1995. Methane Emissions from cattle. J. Anim. Sci. 73:2483-2492.
30 Krishnamoorthy, U., H. Soller, H. Steingas and K. H. Menke. 1995. Energy and protein evaluation of tropical feedstuffs for whole tract and ruminal digestion by chemical analyses and rumen inoculum studies in vitro. Anim. Feed Sci. Technol. 52:177- 188.   DOI   ScienceOn
31 Lee, C. F., R. H. Buu, Y. M. Shy and M. C. Chen. 1991. The nutritive value of pangola grass A253 at different stages of growth. Taiwan Livest. Res. 24:59-65 (in Chinese with English abstract).
32 Lee, M., S. Y. Hwang and P. W. Chiou. 2000. Metabolizable energy of roughage in Taiwan. Small Rumin. Res. 36:251-259.   DOI   ScienceOn
33 McNiven, M. A., E. Prestlokken, L. T. Mydland and A. W. Mitchell. 2002. Laboratory procedure to determine protein digestibility of heat-treated feedstuffs for dairy cattle. Anim. Feed Sci. Technol. 96:1-13.   DOI   ScienceOn
34 Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28:7-12.
35 Mesgaran, D. M. and M. D. Stern. 2005. Ruminal and postruminal protein disappearance of various feeds originating from Iranian plant varieties determined by the in situ mobile bag technique and alternative methods. Anim. Feed Sci. Technol. 118:31-46.   DOI   ScienceOn
36 Garleb, K. A., G. C. Fahey, Jr. S. M. Lewis, M. S. Kerley and L. Montgomery. 1988. Chemical composition and digestibility of fiber fractions of certain by-product feedstuffs fed to ruminants. J. Anim. Sci. 66:2650-2662.
37 Grainger, C., R. Williams, T. Clark, G. Wright and R. J. Eckard. 2010. Supplementation with whole cottonseed causes longterm reduction of methane emission from diary cows offered a forage and cereal grain diet. J. Dairy Sci. 93:2612-2619.   DOI   ScienceOn
38 Getachew, G., G. M. Crovettob, M. Fondevilac, U. Krishnamoorthyd, B. Singhe, M. Spangherof, H. Steingassg, P. H. Robinsona and M. M. Kailasd. 2002. Laboratory variation of 24 h in vitro gas production and estimated metabolizable energy values of ruminant feeds. Anim. Feed Sci. Technol. 102:169-180.   DOI   ScienceOn
39 Getachew, G., P. H. Robinson, E. J. DePeters and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111:57-71.   DOI   ScienceOn
40 Getachew, G., P. H. Robinson, E. J. DePeters, S. J. Taylor and D. D. Gisi, G. E. Higginbotham and T. J. Riordan. 2005. Methane production from commercial dairy rations estimated using an in vitro gas technique. Anim. Feed Sci. Technol. 123-124:391- 402.   DOI   ScienceOn
41 Hale, W. H., C. Lambeth, B. Theurer and D. E. Ray. 1963. Digestibility and utilization of cottonseed hulls by cattle. J. Anim. Sci. 29:773-776.
42 Harvatine, D. I., J. L. Firkins and M. L. Eastridgea. 2002. Whole linted cottonseed as a forage substitute fed with ground or steam-flaked corn digestibility and performance1. J. Dairy Sci. 85:1976-1987.   DOI   ScienceOn
43 Holter, J. B. and A. J. Young. 1992. Methane production in dry and lactating dairy cows. J. Dairy Sci. 75:2165-2175.   DOI
44 Belasco, I. J. 1956. The role of carbohydrates in urea utilization, cellulose digestion and fatty acid formation. J. Anim. Sci. 15: 496-508.