• 제목/요약/키워드: In situ microscopy

검색결과 259건 처리시간 0.029초

Al 박막의 힐록 형성에 미치는 Mo 하부층의 영향에 관한 실시간 분석 (In-situ Analysis on the Effect of Mo Underlayer on Hillock Formation Behavior in Al Thin Films)

  • 이용덕;황수정;이제훈;주영창;박영배
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2007
  • The in-situ scanning electron microscopy observation of real-time hillock evolution in pure hi thin films on glass substrate during Isothermal annealing was analyzed quantitatively to understand the compressive stress relaxation mechanism by focusing on the effect of Mo interlayer between Al film and glass substrate. There is a good correlation between the hillock-induced stress relaxation by in-situ scanning electron microscopy observation ana the measured stress relaxation by wafer curvature method. It is also clearly shown that the existence of Mo interlayer plays an important role in hillock formation probably due to the large difference in interfacial diffusivity of Al films.

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가 (Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites)

  • 최봉재;김영직
    • 대한금속재료학회지
    • /
    • 제48권8호
    • /
    • pp.780-789
    • /
    • 2010
  • The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

자기 집합 단분자막 개질 금 전극을 이용한 수용액 중 폴리피를 성장에 관한 In-situ EQCM 연구 (In-situ EQCM Study on Growth of Polypyrrole Films Using Gold Electrodes Modified with Self-Assembled Monolayers in an Aqueous Solution)

  • 서경자;전일철
    • 전기화학회지
    • /
    • 제5권3호
    • /
    • pp.143-152
    • /
    • 2002
  • Self-assembled monolayer(SAM)로 변형된 금 전극 위로 폴리피롤의 전기화학적 석출 과정을 수용액 상태에서 in-situ EQCM (Electrochemical Quartz Crystal Microbalance)과 ex-situ AFM (Atomic Force Microscopy)을 이용하여 조사하였다. 금 전극에서 cyclic voltammetry로 살펴본 폴리머의 석출은 산화 제한 전위 (anodic limiting potential) 값에 매우 의존적이었으며 주사 횟수에는 의존하지 않았다. 제한 산화 전위가 0.8V (vs Ag | ArCl) 이상일 때 폴리머의 석출은 크게 증가하였다. 그리고 주사 횟수가 증가하면서 질량의 비이상적 변화가 관찰되었는데 이것은 폴리피롤 필름의 rearrangement가 원인이라고 생각된다. 1-dodecanethiol SAM 전극과 thiophene SAM전극에서는 폴리머가 3차원적으로 성장하며 필름의 rearrangement를 수반하였지만 BPUS $(Bis(\omega(N-pyrrolyl)-n-undecyl)disulfide)$ SAM 전극에서는 2차원적인 layer-by-layer 성장을 하고 필름의 rearrangement는 관찰되지 않았다. 폴리머가 급격하게 전극 면으로 석출되면 사슬 모양과 도너츠 모양의 폴리머를 만들며, 정류 상태에 이르면서 주름잡힌 폴리머 필름이 생성되는 것이 원자 힘 현미경 (Atomic Force Microscopy) 이미지로 관찰되었다.

전자현미경 In-Situ 관찰방법을 이용한 황동의 절삭성평가 (Estimation of Machinability of Lead Brass Based on In-Situ Observation in Scanning Electron Microscope)

  • 정승부;임옥동;안성욱
    • Applied Microscopy
    • /
    • 제24권3호
    • /
    • pp.87-93
    • /
    • 1994
  • In order to elucidate the machinability of lead brass, orthogonal machining experiment was conducted in SEM(Scanning Electron Microscope) equipped with a micro-machining device at a cutting speed of $7{\mu}m/s$ for brass containing 0.2 to 3wt% Pb. The microfactors (i.e., shear angle, contact length between chip and tool) were determined by in-situ observations. Machinability of brass containing lead is discussed in terms of the microfactors and the cutting resistant force tested by lathe cutting. The dynamic behavior of the chip formation of lead brass during the machining process was examined: The chips of lead brass form as a shear angle type. The shear angle increases with the content of lead in (6:4) brass. The pronounced effect of lead on the contact length between chip and tool was observed above 1% Pb. The cutting resistant force tested by lathe decreases remarkably with the lead content in brass. The observed microfactors are in close relation to the tested resistant force in macromachining.

  • PDF

In-situ Liquid Mixing 방법으로 제조된 FeAl/TiC 금속간화합물 복합재료의 기계적 특성과 파괴양상에 관한 연구 (A Study on Mechanical Properties and Fracture Behaviors of In-situ Liquid Mixing Processed FeAl/TiC Intermetallic Matrix Composite)

  • 정의훈;박익민;박용호
    • 대한금속재료학회지
    • /
    • 제48권7호
    • /
    • pp.683-689
    • /
    • 2010
  • In this study, FeAl based intermetallic matrix composites reinforced with in-situ synthesized TiC particles were fabricated by an in-situ liquid mixing process. The microstructures, mechanical properties and fracture behaviors of the in-situ liquid mixing processed composite were investigated and compared with the vacuum suction casting processed composite. The results showed that the in-situ formed TiC particles exhibited fine and uniform dispersion in the liquid mixing processed composite, while significant grain boundary clustering and coarsening of TiC particles were obtained by the vacuum suction process. It was also shown in both types of composites that the hardness and bending strength were increased with the increase of the TiC volume fractions. Through the study of fractography in the bending test, it was considered that the TiC particles prohibited brittle intergranular fracture of FeAl intermetallic matrix by crack deflections. Because of the uniformly distributed fine TiC particles, the bending strength of the liquid mixing processed composite was superior to that of the casting processed composite.

Structural and Morphological Changes of Co Nanoparticles and Au-10at.%Pd Thin Film Studied by in Situ Heating in a Transmission Electron Microscope

  • Ji, Yoon-Beom;Park, Hyun Soon
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.208-213
    • /
    • 2017
  • The microstructural changes in Co nanoparticles and an Au-10at.%Pd thin film have been investigated using an in situ heating holder with a micro-electro-mechanical system (MEMS). In Co nanoparticles, two phases (face-centered cubic and hexagonal close-packed crystal structures) were found to coexist at room temperature and microstructures at temperatures, higher than $1,000^{\circ}C$, were observed with a quick response time and significant stability. The actual temperature of each specimen was directly estimated from the changes in the lattice spacing (Bragg-peak separation). For the Au-10at.%Pd thin film, at a set temperature of $680^{\circ}C$, the actual temperature of the sample was estimated to be $1,020^{\circ}C{\pm}123^{\circ}C$. Note that the specimen temperature should be carefully evaluated because of the undesired effects, i.e., the temperature non-uniformity due to the sample design of the MEMS chip, and distortion due to thermal expansion.