DOI QR코드

DOI QR Code

In-situ EQCM Study on Growth of Polypyrrole Films Using Gold Electrodes Modified with Self-Assembled Monolayers in an Aqueous Solution

자기 집합 단분자막 개질 금 전극을 이용한 수용액 중 폴리피를 성장에 관한 In-situ EQCM 연구

  • Seo, Kyoung--Ja (Department of Chemicstry, Chonbuk National University) ;
  • Jeon, Il-Cheol (Department of Chemicstry, Chonbuk National University)
  • 서경자 (전북대학교 자연과학대학 화학과) ;
  • 전일철 (전북대학교 자연과학대학 화학과)
  • Published : 2002.08.01

Abstract

The growth of Polypyrrole film has been investigated during electropolymerization in an aqueous solution on bare and SAM modified gold electrodes by in-situ EQCM and ex-situ AFM. According to the result of cyclic voltammetry measurements, in the case of a bare gold electrode, the electrochemical deposition of polypyrrole were dependent on the limiting oxidative potential, but not on scan numbers. When the limiting potential higher than 0.8 V was applied on the electrode, the amount of polypyrrole deposited on a gold electrode was rapidly increased and the abnormal mass change attributed to the rearrangement of polypyrrole films was observed as the scan number increased. The polypyrrole film Prepared on electrodes modified with 1-dodecanethiol SAM or thiophene SAM grew 3-dimensionally with the rearrangement of film. However, in the case of BPUS SAM, 2-dimensional layer-by-layer growth of film was observed without the rearrangement of film. AFM images showed films with chain-shaped and/ or donut-shaped polymers when grown rapidly and a wrinkled film at the steady state condition.

Self-assembled monolayer(SAM)로 변형된 금 전극 위로 폴리피롤의 전기화학적 석출 과정을 수용액 상태에서 in-situ EQCM (Electrochemical Quartz Crystal Microbalance)과 ex-situ AFM (Atomic Force Microscopy)을 이용하여 조사하였다. 금 전극에서 cyclic voltammetry로 살펴본 폴리머의 석출은 산화 제한 전위 (anodic limiting potential) 값에 매우 의존적이었으며 주사 횟수에는 의존하지 않았다. 제한 산화 전위가 0.8V (vs Ag | ArCl) 이상일 때 폴리머의 석출은 크게 증가하였다. 그리고 주사 횟수가 증가하면서 질량의 비이상적 변화가 관찰되었는데 이것은 폴리피롤 필름의 rearrangement가 원인이라고 생각된다. 1-dodecanethiol SAM 전극과 thiophene SAM전극에서는 폴리머가 3차원적으로 성장하며 필름의 rearrangement를 수반하였지만 BPUS $(Bis(\omega(N-pyrrolyl)-n-undecyl)disulfide)$ SAM 전극에서는 2차원적인 layer-by-layer 성장을 하고 필름의 rearrangement는 관찰되지 않았다. 폴리머가 급격하게 전극 면으로 석출되면 사슬 모양과 도너츠 모양의 폴리머를 만들며, 정류 상태에 이르면서 주름잡힌 폴리머 필름이 생성되는 것이 원자 힘 현미경 (Atomic Force Microscopy) 이미지로 관찰되었다.

Keywords

References

  1. Hanbook of Conducting Polymers v.1;2 T. A. Skotheim
  2. Synth. Met. v.84 D. M. Collard;C. N. Sayre https://doi.org/10.1016/S0379-6779(97)80768-0
  3. Langmuir v.13 Z. Huang;P.-C. Wang;A. C. MacDiarmid;Y. Xia;G. Whitesides https://doi.org/10.1021/la970537z
  4. J. Am. Chem. Soc. v.119 N. B. Larsen;H. Biebuyck;E. Delamarche;B. Michel https://doi.org/10.1021/ja964090c
  5. J. Am. Chem. Soc. v.120 L. Yan;X. -M. Zhao;G. M. Whitesides https://doi.org/10.1021/ja980770z
  6. Langmuir v.13 S. Xu;G.-y. Liu https://doi.org/10.1021/la962029f
  7. Science v.283 R. D. Pinner;J. Zhu;F. Xu;S. Hong;C. A. Mirkin https://doi.org/10.1126/science.283.5402.661
  8. Ultramicroscopy v.86 M. Fujihira;Y. Tani;M. Furugori;U. Akiba;Y. Okabe https://doi.org/10.1016/S0304-3991(00)00100-5
  9. Langmuir v.14 E. Smela https://doi.org/10.1021/la970863e
  10. J. Electrochem. Soc. v.145 D. B. Wurm;K. Zong;Y.-H. Kim;Y.-T. Kim;M. Shin;I. C. Jeon https://doi.org/10.1149/1.1838508
  11. Langmiur v.11 R. J. Willicut;R. L. McCarley https://doi.org/10.1021/la00001a050
  12. Langmiur v.11 C. N. Sayre;D. M. Collard https://doi.org/10.1021/la00001a051
  13. Langmiur v.13 C. N. Sayre;D. M. Collard https://doi.org/10.1021/la960420v
  14. Thin Solid Films v.347 Y.-H. Kim;D. B. Wurm;M. W. Kim;Y.-T. Kim https://doi.org/10.1016/S0040-6090(98)01763-5
  15. Langmuir v.15 Y.-H. Kim;Y.-T. Kim https://doi.org/10.1021/la980098j
  16. J. Phys. Chem. v.98 S. J. Stranick;A. N. Parikh;Y.-T. Tao;D. L. Allara;P. S. Weiss https://doi.org/10.1021/j100082a040
  17. Langmiuir v.15 D. Hobara;T. Sasaki;S.-i. Imabayashi;T. Kakiuch https://doi.org/10.1021/la981631y
  18. Langmuir v.16 S. Chen;L. Li;C. L. Boozer;S. Jiang https://doi.org/10.1021/la000417i
  19. J. Electroanal. Chem. v.492 X. Li;X. Zhang;Q. Sun;W. Lu;H. Li https://doi.org/10.1016/S0022-0728(00)00248-5
  20. J. Electroanal. Chem. v.206 A. J. Downard;D. Pletcher https://doi.org/10.1016/0022-0728(86)90263-9
  21. J. Electroanal. Chem. v.251 C. K. Baker;J. R. Reynolds https://doi.org/10.1016/0022-0728(88)85192-1
  22. J. Electroanal. Chem. v.312 T. F. Otero;C. Santamaria https://doi.org/10.1016/0022-0728(91)85160-Q
  23. Synth. Met. v.51 T. F. Otero;C. Santamaria https://doi.org/10.1016/0379-6779(92)90285-Q
  24. Langmuir v.8 F.-B. Li;W. J. Albery https://doi.org/10.1021/la00042a025
  25. Polymer v.36 D. A. Kaplin;S. Qutubuddin https://doi.org/10.1016/0032-3861(95)93931-B
  26. Electrochim. Acta v.44 M. Zhou;J. Heinze https://doi.org/10.1016/S0013-4686(98)00293-X
  27. Langmuir v.11 R. J. Willicut;R. L. McCarley https://doi.org/10.1021/la00001a050
  28. Langmuir v.14 X. W. Cai;J. S. Gao;Z. X. Xie;Y. Xie;Z. Q. Tian;B. W. Mao https://doi.org/10.1021/la970675o
  29. J. Phys. Chem. v.97 W. Pei;O. Inganas https://doi.org/10.1021/j100124a041
  30. Electrochim. Acta v.41 T. F. Otero;V. Olazabal https://doi.org/10.1016/0013-4686(95)00308-2
  31. J. Phys. Chem. v.99 M. Arca;M. V. Mirkin;A. J. Bard https://doi.org/10.1021/j100014a026
  32. Synth. Met. v.79 Y. Li;Y. Fan https://doi.org/10.1016/0379-6779(96)80197-4
  33. Eletroanalysis v.10 A. Wojda;K. Maksymiuk https://doi.org/10.1002/(SICI)1521-4109(199812)10:18<1269::AID-ELAN1269>3.0.CO;2-B
  34. Eletroanalysis v.11 J. Wang;B. Zeng;C. Fang;F. He;X. Zhou https://doi.org/10.1002/(SICI)1521-4109(199912)11:18<1345::AID-ELAN1345>3.0.CO;2-T
  35. Synth. Met. v.99 M.-K. Song;J.-K. Park;I. H. Yeo;H.-W. Rhee https://doi.org/10.1016/S0379-6779(98)01504-5
  36. J. Electroanal. Chem. v.468 M. Lee;H. Yang;J. Kwak https://doi.org/10.1016/S0022-0728(99)00037-6
  37. Electrochim. Acta v.41 T. F. Otero;M. Bengoechea https://doi.org/10.1016/0013-4686(95)00506-4
  38. Langmuir v.15 T. F. Otero;M. Bengoechea https://doi.org/10.1021/la971311z
  39. Synth. Commun. v.27 K. Zong;S. T. Brittain;D. B. Wurm;Y.-T. Kim https://doi.org/10.1080/00397919708004816
  40. J. Electroanal.Chem. v.272 K. Naoi;M. M. Lien;W. H. Smyrl https://doi.org/10.1016/0022-0728(89)87088-3
  41. Electroanalytical Chemistry v.5 A. J. Bard
  42. Acc. Chem. Res. v.18 J. L. Bredas;G. B. Street https://doi.org/10.1021/ar00118a005
  43. Anal. Chem. v.61 M. R. Deakin;D. A. Buttry https://doi.org/10.1021/ac00195a001
  44. Eur. Polymer J. v.35 Y. J. Yuan;S. B. Adeloiju;G. G. Wallace https://doi.org/10.1016/S0014-3057(98)00268-7