DOI QR코드

DOI QR Code

A Study on Mechanical Properties and Fracture Behaviors of In-situ Liquid Mixing Processed FeAl/TiC Intermetallic Matrix Composite

In-situ Liquid Mixing 방법으로 제조된 FeAl/TiC 금속간화합물 복합재료의 기계적 특성과 파괴양상에 관한 연구

  • Chung, Euihoon (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Ikmin (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Yongho (School of Materials Science and Engineering, Pusan National University)
  • Received : 2010.02.03
  • Published : 2010.07.22

Abstract

In this study, FeAl based intermetallic matrix composites reinforced with in-situ synthesized TiC particles were fabricated by an in-situ liquid mixing process. The microstructures, mechanical properties and fracture behaviors of the in-situ liquid mixing processed composite were investigated and compared with the vacuum suction casting processed composite. The results showed that the in-situ formed TiC particles exhibited fine and uniform dispersion in the liquid mixing processed composite, while significant grain boundary clustering and coarsening of TiC particles were obtained by the vacuum suction process. It was also shown in both types of composites that the hardness and bending strength were increased with the increase of the TiC volume fractions. Through the study of fractography in the bending test, it was considered that the TiC particles prohibited brittle intergranular fracture of FeAl intermetallic matrix by crack deflections. Because of the uniformly distributed fine TiC particles, the bending strength of the liquid mixing processed composite was superior to that of the casting processed composite.

Keywords

Acknowledgement

Supported by : 부산대학교

References

  1. J. L. Jordan and S. C. Deevi, Intermetallics 11, 507 (2003). https://doi.org/10.1016/S0966-9795(03)00027-X
  2. C.-S. Han, J. of the Korea Society for Heat Treatment 20, 31 (2007).
  3. P. Hausild, J. Siegl, P. Malek, and V. Sima, Intermetallics 17, 680 (2009). https://doi.org/10.1016/j.intermet.2009.02.008
  4. U. Rakish, R. A. Buckley, H. Jones, and C. M. Sellars, ISIJ Int. 31, 1113 (1991). https://doi.org/10.2355/isijinternational.31.1113
  5. C. T. Liu, MRS 288, 3 (1993).
  6. P. I. Ferreira, A. A. Couto, and J. C. C. de Paola, Mater. Sci. Eng. (A) 192/193, 165 (1995). https://doi.org/10.1016/0921-5093(94)03231-9
  7. M. Jablonska, E. Bernstock, and A Jasik, Archives of Materials Science and Engineering 28, 625 (2007).
  8. D. H. Sastry, Y. V. R. K. Prasad, and S. C. Devi, Mater. Sci. Eng. (A) 299, 157 (2001). https://doi.org/10.1016/S0921-5093(00)01380-0
  9. D. G. Morris, M. A. Munoz-Morris, and Chao, J. Intermetallics 12, 821 (2004). https://doi.org/10.1016/j.intermet.2004.02.032
  10. H. Skoglund, M. Knutson, and B. Karlsson, Intermetallics 12, 977 (2004). https://doi.org/10.1016/j.intermet.2004.03.004
  11. O. Tassa, C. Testani, P. Bocher, and A. Lefort, Proceeding of Materials Development in Rail, Tire, Wing, Hull Transportation, p.2.101, Elsevier, London, (1992).
  12. S. Revol, S. Launois, R. Baccino, P. Sire, Y. Girard, and S. Sereni, Proceeding of PM Conference EURO PM2001, European Conference on Powder Metallurgy, France (2001).
  13. C.-S. Han, Thesis, p.324-333, Hoseo University, Chungnam (1997).
  14. R. Subramanian and J. H. Schneibel, JOM 49, 50 (1997).
  15. D. G. Morris, J. Chao, C. Garcia Oca, and M. A. Munoz- Morris, Mater. Sci. Eng. (A) 339, 232 (2003). https://doi.org/10.1016/S0921-5093(02)00108-9
  16. W. H. Jiang, W. D. Pan, G. H. Song, and X. L. Han, J. of Mater. Sci. Lett. 16, 1830 (1997). https://doi.org/10.1023/A:1018576904132
  17. H. Y. Wang, Q. C. Jiang, X. L. Li, and J. G. Wang, Scr. Mater. 48, 1349 (2003). https://doi.org/10.1016/S1359-6462(03)00014-9
  18. T. B. Massalski, (ed.), Binary Alloy Phase Diagrams., p.112, ASM, Metals Park, Ohio, (1986).
  19. N. S. Stoloff and C.T. Liu, Intermetallics 2, 75 (1994). https://doi.org/10.1016/0966-9795(94)90001-9
  20. K.-I. Park, S.-M. Joo, H.-C. Choe, and D.-C. Choi, J. of the Korean Inst. of Met. & Mater. 36, 377 (1998).
  21. S. H. Ko and S. Hanada, Intermetallics 7, 947 (1999). https://doi.org/10.1016/S0966-9795(99)00002-3
  22. P. Hausild, J. Siegl, P. Malek, and V. Sima, Intermetallics 17, 680 (2009). https://doi.org/10.1016/j.intermet.2009.02.008
  23. M. X. Gao, F. J. Oliveria, Y. Pan, L. Yang, J. L. Baptista, and J. M. Vieira, Intermetallics 13, 460 (2005). https://doi.org/10.1016/j.intermet.2004.08.005
  24. R. Subramanian and J. H. Schneibel, Acta Mater. 46, 4733 (1998). https://doi.org/10.1016/S1359-6454(98)00130-X
  25. Jungsu Park, Jonghoon Kim, Manyoung Ha, Bongkyu Park, Yongho Park, and Ikmin Park, J. Kor. Inst. Met. & Mater. 46, 382-389 (2008).
  26. K. T. Faber and A. G. Evans, Acta Metallurgica 31, 565 (1983). https://doi.org/10.1016/0001-6160(83)90046-9