Browse > Article
http://dx.doi.org/10.3365/KJMM.2010.48.08.780

Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites  

Choi, Bong-Jae (Sungkyunkwan University, School of Advanced Materials Science and Engineering)
Kim, Young-Jig (Sungkyunkwan University, School of Advanced Materials Science and Engineering)
Publication Information
Korean Journal of Metals and Materials / v.48, no.8, 2010 , pp. 780-789 More about this Journal
Abstract
The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.
Keywords
titanium; composites; casting; microstructure; tensile test;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites, p.1-10, Cambridge University Press, United Kingdom (1993).
2 D. B. Miracle and S. L. Donaldson, ASM Handbook Vol. 21 Composites, p.579-586, ASM International, USA (2001).
3 C. Leyens and M. Peters, Titanium and Titanium alloys, WILEY-VCH, p.305-330, Germany (2003).
4 G. Luo, Q. Zhen and J. Deng, Ttanium '95: Science and Technology, p.2704, The Institute of Materials, United Kindom (1995).
5 W. M. Hanusiak, J. L. Fields, and D. S. Nansen, Ti-2003: Science and Technology, p.2463, WILEY-VCH, Germany (2003)
6 C. M. Ward-Close, M. R. Winston, and P. G. Partidge, Mater. & Design 15, 67 (1994).   DOI   ScienceOn
7 T. W. Clyne and H. M. Flower, Titanium '92: Science and Technology, p.2467, TMS, United States (1992).
8 S. Ranganath, J. Mater. Sci. 32, 1 (1997).
9 T. Godfrey, P. S. Goolwin, and C. M. Ward-close, Adv. Eng. Mater. 2, 85 (2000).   DOI   ScienceOn
10 I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, J. Mater. Sci. 26, 1137 (1991).   DOI
11 X. Zhang, W. Lu, D. Zhang, and R. Wu, Script. Mater. 41, 39 (1999).   DOI   ScienceOn
12 S. Ranganath, M. Vijayakumar, and J. Subrahmanyam, Mater. Sci. & Eng. A149, 253 (1992).
13 T. Saito, JOM 56, 33 (2004).
14 S. Y. Sung, M. G. Kim, and Y. J. Kim, J. Kor. Inst. Met. & Mater. 41, 557 (2003).
15 M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Table, American Chemical Society and American Institute of Physics, United State (1985).
16 PCPDFWIN version 2.1 Ti: PDF No 44-1294, TiC:PDF No 32-1283, TiB:PDF No 73-2148.
17 M. Taya and R. J. Arsenault, Script. Metall. 21, 349 (1987).   DOI   ScienceOn
18 V. C. Nardone and K. M. Prewo, Script. Metall. 20, 43 (1986).   DOI   ScienceOn