DOI QR코드

DOI QR Code

Microstructure and Tensile Property of In-Situ (TiB+TiC) Particulate Reinforced Titanium Matrix Composites

반응생성 합성에 의한 (TiB+TiC) 입자강화 Ti기 복합재료의 미세조직 및 인장특성 평가

  • Choi, Bong-Jae (Sungkyunkwan University, School of Advanced Materials Science and Engineering) ;
  • Kim, Young-Jig (Sungkyunkwan University, School of Advanced Materials Science and Engineering)
  • 최봉재 (성균관대학교 신소재공학과) ;
  • 김영직 (성균관대학교 신소재공학과)
  • Received : 2010.04.02
  • Published : 2010.08.22

Abstract

The aim of this study is to evaluate the microstructure and tensile property of in-situ (TiB+TiC) particulate reinforced titanium matrix composites (TMCs) synthesized by the investment casting process. Boron carbide ($1,500{\mu}m$ and $150{\mu}m$) was added to the titanium matrix during vacuum induction melting, which can provide the in-situ reaction of $5Ti+B_4C{\rightarrow}4TiB+TiC$. 0.94, 1.88 and 3.76 wt% of $B_4C$ were added to the melt. The phases identification of the in-situ synthesized TMCs was examined using scanning electron microscopy, an X-ray diffractometer, an electron probe micro-analyzer and transmission electron microscopy. Tensile properties of TMCs were investigated in accordance with the reinforcement size and volume fraction. The improvement of tensile property of titanium matrix composites was caused by load transfer from the titanium matrix to the reinforcement and by grain refinement of titanium matrix and reinforcements.

Keywords

References

  1. T. W. Clyne and P. J. Withers, An Introduction to Metal Matrix Composites, p.1-10, Cambridge University Press, United Kingdom (1993).
  2. D. B. Miracle and S. L. Donaldson, ASM Handbook Vol. 21 Composites, p.579-586, ASM International, USA (2001).
  3. C. Leyens and M. Peters, Titanium and Titanium alloys, WILEY-VCH, p.305-330, Germany (2003).
  4. G. Luo, Q. Zhen and J. Deng, Ttanium '95: Science and Technology, p.2704, The Institute of Materials, United Kindom (1995).
  5. W. M. Hanusiak, J. L. Fields, and D. S. Nansen, Ti-2003: Science and Technology, p.2463, WILEY-VCH, Germany (2003)
  6. C. M. Ward-Close, M. R. Winston, and P. G. Partidge, Mater. & Design 15, 67 (1994). https://doi.org/10.1016/0261-3069(94)90039-6
  7. T. W. Clyne and H. M. Flower, Titanium '92: Science and Technology, p.2467, TMS, United States (1992).
  8. S. Ranganath, J. Mater. Sci. 32, 1 (1997).
  9. T. Godfrey, P. S. Goolwin, and C. M. Ward-close, Adv. Eng. Mater. 2, 85 (2000). https://doi.org/10.1002/(SICI)1527-2648(200003)2:3<85::AID-ADEM85>3.0.CO;2-U
  10. I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, J. Mater. Sci. 26, 1137 (1991). https://doi.org/10.1007/BF00544448
  11. X. Zhang, W. Lu, D. Zhang, and R. Wu, Script. Mater. 41, 39 (1999). https://doi.org/10.1016/S1359-6462(99)00087-1
  12. S. Ranganath, M. Vijayakumar, and J. Subrahmanyam, Mater. Sci. & Eng. A149, 253 (1992).
  13. T. Saito, JOM 56, 33 (2004).
  14. S. Y. Sung, M. G. Kim, and Y. J. Kim, J. Kor. Inst. Met. & Mater. 41, 557 (2003).
  15. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Table, American Chemical Society and American Institute of Physics, United State (1985).
  16. PCPDFWIN version 2.1 Ti: PDF No 44-1294, TiC:PDF No 32-1283, TiB:PDF No 73-2148.
  17. M. Taya and R. J. Arsenault, Script. Metall. 21, 349 (1987). https://doi.org/10.1016/0036-9748(87)90227-4
  18. V. C. Nardone and K. M. Prewo, Script. Metall. 20, 43 (1986). https://doi.org/10.1016/0036-9748(86)90210-3