• Title/Summary/Keyword: Implicit Time Discretization

Search Result 43, Processing Time 0.017 seconds

DOUBLY NONLINEAR PARABOLIC EQUATIONS RELATED TO THE LERAY-LIONS OPERATORS: TIME-DISCRETIZATION

  • Shin, Ki-Yeon;Kang, Su-Jin
    • East Asian mathematical journal
    • /
    • v.26 no.3
    • /
    • pp.403-413
    • /
    • 2010
  • In this paper, we consider a doubly nonlinear parabolic equation related to the Leray-Lions operator with Dirichlet boundary condition and initial data given. By exploiting a suitable implicit time-discretization technique, we obtain the existence of global strong solution.

AN IMPLICIT NUMERICAL SCHEME FOR SOLUTION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS ON CURVILINEAR GRIDS

  • Fayyaz, Hassan;Shah, Abdullah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.881-898
    • /
    • 2018
  • This article deals with implementation of a high-order finite difference scheme for numerical solution of the incompressible Navier-Stokes equations on curvilinear grids. The numerical scheme is based on pseudo-compressibility approach. A fifth-order upwind compact scheme is used to approximate the inviscid fluxes while the discretization of metric and viscous terms is accomplished using sixth-order central compact scheme. An implicit Euler method is used for discretization of the pseudo-time derivative to obtain the steady-state solution. The resulting block tridiagonal matrix system is solved by approximate factorization based alternating direction implicit scheme (AF-ADI) which consists of an alternate sweep in each direction for every pseudo-time step. The convergence and efficiency of the method are evaluated by solving some 2D benchmark problems. Finally, computed results are compared with numerical results in the literature and a good agreement is observed.

DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS (압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발)

  • Choi, J.H.;Lee, H.D.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

LARGE TIME-STEPPING METHOD BASED ON THE FINITE ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD EQUATION

  • Yang, Yanfang;Feng, Xinlong;He, Yinnian
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1129-1141
    • /
    • 2011
  • In this paper, a class of large time-stepping method based on the finite element discretization for the Cahn-Hilliard equation with the Neumann boundary conditions is developed. The equation is discretized by finite element method in space and semi-implicit schemes in time. For the first order fully discrete scheme, convergence property is investigated by using finite element analysis. Numerical experiment is presented, which demonstrates the effectiveness of the large time-stepping approaches.

A Numerical Study of laminar vortex-shedding past a circular cylinder (원형 Cylinder 주위의 Vortex Shedding에 관한 수치 해석 연구)

  • Kim T. G.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.33-38
    • /
    • 2000
  • A Numerical study of laminar vortex-shedding past a circular cylinder has been performed widely by many researchers. Many factors, such as numerical technique and domain size, number and shape of grid, affected predicting vortex shedding and Strouhal number. In the present study, the effect of convection scheme, time discretization methods and grid dependence were investigated. The present paper presents the finite volume solution of unsteady flow past circular cylinder at Re=200, 400. The Strouhal number was predicted using UDS, CDS, Hybrid, Power-law, LUDS, QUICK scheme for convection term, implicit and crank-nicolson methods for time discretization. The grid dependence was investigated using H-type mesh and O-type mesh. It also studied that the effect of mesh size of the nearest adjacent grid of circular cylinder. The effect of convection scheme is greater than the effect of time discretization on predicting Strouhal. It has been found that the predicted Strouhal number changed with mesh size and shape.

  • PDF

HIGHER ORDER OF FULLY DISCREATE SOLUTION FOR PARABOLIC PROBLEM IN $L_{\infty}$

  • Lee, H.Y.;Lee, J.R.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.17-30
    • /
    • 1997
  • In this work we approximate the solution of initialboun-dary value problem using a Galerkin-finite element method for the spatial discretization and Implicit Runge-Kutta method for the spatial discretization and implicit Runge-Kutta methods for the time stepping. To deal with the nonlinear term f(x, t, u), we introduce the well-known extrapolation sheme which was used widely to prove the convergence in $L_2$-norm. We present computational results showing that the optimal order of convergence arising under $L_2$-norm will be preserved in $L_{\infty}$-norm.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR A SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE

  • DABA, IMIRU TAKELE;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.655-676
    • /
    • 2021
  • A parameter uniform numerical scheme is proposed for solving singularly perturbed parabolic partial differential-difference convection-diffusion equations with a small delay and advance parameters in reaction terms and spatial variable. Taylor's series expansion is applied to approximate problems with the delay and advance terms. The resulting singularly perturbed parabolic convection-diffusion equation is solved by utilizing the implicit Euler method for the temporal discretization and finite difference method for the spatial discretization on a uniform mesh. The proposed numerical scheme is shown to be an ε-uniformly convergent accurate of the first order in time and second-order in space directions. The efficiency of the scheme is proved by some numerical experiments and by comparing the results with other results. It has been found that the proposed numerical scheme gives a more accurate approximate solution than some available numerical methods in the literature.

Development of the LMFBR Accident Analysis Computer Code (고속증식로 사고분석 코드의 개발)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 1984
  • Mathematically-rigorous time-volume averaged conservation equations were simplified to established the differential equations of THERMIT-6S, which is a two-fluid 3-D code. The difference equations of THERMIT-6S were obtained by discretizing the proceeding set of differential equations. The spatial discretization is characterized by a first-order spatial scheme, donor cell method, and staggered mesh layout. For time discretization, a first order semi-implicit scheme treats implictly sonic terms and terms relating to local transport phenomena and explicitly convective terms. The results were linearized by the Newton-Raphson method. In order to construct the reduced pressure equation, the linearized equations were manipulated so that all variables are coupled between mesh cells through only the pressure variable. By simulating numerically the OPERA-15 experiment, it was found that THERMIT-6S is a very powerful code in predicting reactor behavior after sodium boiling including flow coastdown, reversal flow and flow oscillation.

  • PDF