DOI QR코드

DOI QR Code

DOUBLY NONLINEAR VOLTERRA EQUATIONS INVOLVING THE LERAY-LIONS OPERATORS

  • Shin, Kiyeon (Department of Mathematics, Pusan National University) ;
  • Kang, Sujin (Department of Nanomaterials Engineering, Pusan National University)
  • Received : 2012.12.06
  • Accepted : 2013.01.09
  • Published : 2013.01.31

Abstract

In this paper we consider a doubly nonlinear Volterra equation related to the Leray-Lions with a nonsmooth kernel. By exploiting a suitable implicit time-discretization technique we obtain the existence of global strong solution.

Keywords

References

  1. R. Adams, Sovolev Spaces, Academic Press, New York, 1975.
  2. Alt, W. Hans and S. Luckhaus, Qusilinear elliptic-parabolic differential equations, Math. Z. 83 (1983), 311-341.
  3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordho Internat. Publ. Leyden, 1976.
  4. A. Bensoussan, A. L. Boccardo and F. Murat, On a nonlinear P.D.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincare 5 (1988), no. 4, 347-364.
  5. J. I. Diaz, and J. F. Padial, Uniqueness and existence of solutions in the $BV_{t}(Q)$ space to a doubly nonlinear parabolic problem, Differential and Integral Eqns. 40 (1966), 527-560.
  6. A. Eden, B. Michaux and J. M. Rakotoson, Semidiscretized nonlinear evolution equa-tions as discrete dynamical systems and error analysis, Indiana Univ. Math. J. 39 (1990), no. 3, 737-783. https://doi.org/10.1512/iumj.1990.39.39036
  7. A. Eden, B. Michaux and J. M. Rakotoson, Doubly nonlinear parabolic type equations as dynamical systems, J. Dynam. Di. Equ. 3 (1991), no. 1, 87-131. https://doi.org/10.1007/BF01049490
  8. A. El Hachimi and H. El Ouardi, Existence and regularity of a global attractor for doubly nonlinear parabolic equations, Electro. J. Di. Equ. 2002 (2002), no. 45, 1-15.
  9. G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly non-linear Volterra equation, J. Di. Equ. 228 (2006), 707-736. https://doi.org/10.1016/j.jde.2005.12.010
  10. A. V. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for Quasilinear elliptic-parabolic equations, J. Math. Sci. 109 (2002), no. 5, 1851-1866. https://doi.org/10.1023/A:1014488123746
  11. F. Otto, $L^{1}$-contraction and uniqueness for Quasilinear Elliptic-Parabolic equations, J. Di. Equ. 131 (1996), 20-38. https://doi.org/10.1006/jdeq.1996.0155
  12. A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl. 339 (2008), 281-294. https://doi.org/10.1016/j.jmaa.2007.06.028
  13. M. Schatzman, Stationary solutions and asymptotic behavior of a Quasilinear degenerate parabolic equation, Indiana Univ. Math. J. 33 (1984), no. 1, 1-29. https://doi.org/10.1512/iumj.1984.33.33001
  14. K. Shin and S. Kang, Doubly nonlinear parabolic equations related to the leray-lions operators:time-discretization, East Asian Math. J. 26 (2010), no. 3, 403-413.
  15. R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys and Monographs 49, Amer. Math. Soc.
  16. J. Simon, Compact sets in the space $L^{p}$(0; T : B), Ann. Math. Pure and Appl. 146 (1987), no. 4, 65-96.
  17. U. Stefanelli, Well-posedness and time discretization of a nonlinear Volterra integrod-irential equation, J. Integral Eqns. Appl. 13 (2001), no. 3, 273-304. https://doi.org/10.1216/jiea/1020254675
  18. U. Stefanelli, On some nonlocal evolution equation in Banach space, J. Evol. Eqns. 4 (2004), 1-26. https://doi.org/10.1007/s00028-003-0056-4