References
- R. Adams, Sovolev Spaces, Academic Press, New York, 1975.
- Alt, W. Hans and S. Luckhaus, Qusilinear elliptic-parabolic differential equations, Math. Z. 83 (1983), 311-341.
- V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordho Internat. Publ. Leyden, 1976.
- A. Bensoussan, A. L. Boccardo and F. Murat, On a nonlinear P.D.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincare 5 (1988), no. 4, 347-364.
-
J. I. Diaz, and J. F. Padial, Uniqueness and existence of solutions in the
$BV_{t}(Q)$ space to a doubly nonlinear parabolic problem, Differential and Integral Eqns. 40 (1966), 527-560. - A. Eden, B. Michaux and J. M. Rakotoson, Semidiscretized nonlinear evolution equa-tions as discrete dynamical systems and error analysis, Indiana Univ. Math. J. 39 (1990), no. 3, 737-783. https://doi.org/10.1512/iumj.1990.39.39036
- A. Eden, B. Michaux and J. M. Rakotoson, Doubly nonlinear parabolic type equations as dynamical systems, J. Dynam. Di. Equ. 3 (1991), no. 1, 87-131. https://doi.org/10.1007/BF01049490
- A. El Hachimi and H. El Ouardi, Existence and regularity of a global attractor for doubly nonlinear parabolic equations, Electro. J. Di. Equ. 2002 (2002), no. 45, 1-15.
- G. Gilardi and U. Stefanelli, Time-discretization and global solution for a doubly non-linear Volterra equation, J. Di. Equ. 228 (2006), 707-736. https://doi.org/10.1016/j.jde.2005.12.010
- A. V. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for Quasilinear elliptic-parabolic equations, J. Math. Sci. 109 (2002), no. 5, 1851-1866. https://doi.org/10.1023/A:1014488123746
-
F. Otto,
$L^{1}$ -contraction and uniqueness for Quasilinear Elliptic-Parabolic equations, J. Di. Equ. 131 (1996), 20-38. https://doi.org/10.1006/jdeq.1996.0155 - A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl. 339 (2008), 281-294. https://doi.org/10.1016/j.jmaa.2007.06.028
- M. Schatzman, Stationary solutions and asymptotic behavior of a Quasilinear degenerate parabolic equation, Indiana Univ. Math. J. 33 (1984), no. 1, 1-29. https://doi.org/10.1512/iumj.1984.33.33001
- K. Shin and S. Kang, Doubly nonlinear parabolic equations related to the leray-lions operators:time-discretization, East Asian Math. J. 26 (2010), no. 3, 403-413.
- R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys and Monographs 49, Amer. Math. Soc.
-
J. Simon, Compact sets in the space
$L^{p}$ (0; T : B), Ann. Math. Pure and Appl. 146 (1987), no. 4, 65-96. - U. Stefanelli, Well-posedness and time discretization of a nonlinear Volterra integrod-irential equation, J. Integral Eqns. Appl. 13 (2001), no. 3, 273-304. https://doi.org/10.1216/jiea/1020254675
- U. Stefanelli, On some nonlocal evolution equation in Banach space, J. Evol. Eqns. 4 (2004), 1-26. https://doi.org/10.1007/s00028-003-0056-4