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DOUBLY NONLINEAR PARABOLIC EQUATIONS RELATED
TO THE LERAY-LIONS OPERATORS:

TIME-DISCRETIZATION

Kiyeon Shin and Sujin Kang

Abstract. In this paper, we consider a doubly nonlinear parabolic equa-

tion related to the Leray-Lions operator with Dirichlet boundary con-
dition and initial data given. By exploiting a suitable implicit time-

discretization technique, we obtain the existence of global strong solution.

1. Introduction

Let Ω be a regular open bounded subset of finite dimensional Rd (d ≥ 3)
and ∂Ω its boundary. In this paper, we study a doubly nonlinear parabolic
partial differential equation related to Leray-Lions operators. More precisely,
we are interested in the existence and uniqueness of the solution of the following
problem ; ∂β(u)

∂t − div a(x, u,∇u) + f(x, t, u) = 0 in Ω× [0, T ],
u = 0 on ∂Ω× [0, T ],
β(u(·, 0)) = β(u0) in Ω,

(1)

where β is a nonlinearity of porous medium type, − div a(x, u,∇u) = Au is
the Leray-Lions operator and f is a nonlinearity of reaction diffusion type. As
a prime example of a(x, u,∇u), we may choose the p-Laplacian operator. In
other words, the following equation is a special case of (1).

∂β(u)
∂t

−∆pu+ f(x, t, u) = 0, (2)

where −∆pu = −div (|∇u|p−2∇u). Problem (2) can be found in many appli-
cations in the fields of mechanics, physics and biology (non-Newtonian fluids,
gas flow in porous media, spread of biological populations, etc.). In particular,
for p = 2, (2) has been motivated by reading of two papers. The one due
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to M. Gurtin [7] gives a non phenomenological derivation of the generalized
Allen-Cahn equation,

a(u,∇u, ut)ut −∆u+ f(t, x, u) = 0 (3)

with a ≥ 0, which can be degenerate and hence we may rewrite (3) as the form
of equation (2) provided a depends only on u.

On the other hand, in [9], a non-isothermal phase transition problem is
modeled by A. Miranvile and G. Schimperna with Gurtin’s approach to the
following system of equations ;

(u2)t −∆u = f + uχχt + (χt)2, χt −∆χ+ g(χ) = −uχ,

where the unknowns are the absolute temperature u and the phase field χ. If χ
is given then the first equation becomes the equation of the form (2) provided
β(u) = u2 for positive u.

For the other cases with p = 2 in (2), we may cite the works of M. Schatzman,
A. Eden, B. Michaux, J.M. Rakotoson, A. Rougirel, J.I. Diaz and J.F. Padial
(cf. [4, 5, 10, 12]). A lot of works dedicated to the existence and the large
time behavior of solutions has been made for the equation. When β(u) = u
and p = 2 in (2), M. Schatzman[12] considers the way to reduce the equation
to the reaction-diffusion equation. A. Eden, B. Michaux and J.M. Rakotoson
study the existence of solutions using the method of semi-discretization [4] and
using Galerkin’s approximation method [5], respectively. Also, A. Rougirel [10]
studies the asymptotic behavior of solutions with |∂f∂t (t, x, u)| ≤ CM , where
CM > 0.

In case of p > 1 in (2), A. Bensoussan, L. Boccardo and F. Murat [3] study
the existence of solution for β = 0 and A. El Hachimi and H. El Ouardi [6]
study the existence and regularity of this equation by Galerkin’s approximation
method under the assumption that f is differentiable. Thus we shall show
existence of solution of (1), which is more generalized than (2), under the
conditions that f is increasing and sign condition.

This is the plan of paper ; We recall our assumptions and state main results
in section 2. In section 3, we shall show the existence of the corresponding
discrete scheme of the equation. And, some a priori estimates on the discrete
solutions is given in section 4. Next, section 5 devotes to show the passage to
the limit in approximations and concludes the proof of the existence.

2. Assumptions and main results

We let || · ||p,|| · ||1,p and || · ||−1,p denote the norm in Lp(Ω), W 1,p
0 (Ω) and

W−1,p(Ω), respectively, where 1 < p < ∞. And we let < ·, · > denote the
duality between W 1,p

0 (Ω) and W−1,p′(Ω) or the inner product in L2(Ω). For
p ≥ 1, we define its conjugate p′ by 1/p + 1/p′ = 1. Also, we let Ci and C be
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positive constants and λi (i = 1, . . . , 4) imbedding constants [1] such that

|| · ||p ≤ λ1|| · ||1,p, || · ||2 ≤ λ2|| · ||1,p, (
2d

2 + d
≤ p < 2),

and || · ||1 ≤ λ3|| · ||p ≤ λ4|| · ||1,p, (p ≥ 2).

Suppose β is a continuous function with β(0) = 0. By defining ψ(t) =∫ t
0
β(s)ds for t ∈ R, the Legendre transform is defined as ψ∗(τ) = sups∈R{τs−

ψ(s)}.
Now, we are preparing our assumptions and the following well known defi-

nitions, lemmas which are used throughout this paper.
We assume that

(H1) β is an increasing and continuous from R to R with β(0) = 0 and
u0 ∈ L∞(Ω).

(H2) a : Ω× R× RN → RN is a Caratheodory function such that

|a(x, s, ξ)| ≤ γ[|s|p−1 + |ξ|p−1 + k(x)],
(a(x, s, ξ)− a(x, s, η))(ξ − η) > 0, for all ξ 6= η,

a(x, s, ξ)ξ ≥ α|ξ|p,

where k(x) ∈ Lp′(Ω), k ≥ 0, γ > 0 and α > 0.
(H3) For ξ ∈ R, the map (x, t) 7→ f(x, t, ξ) is measurable and ξ 7→ f(x, t, ξ)

is continuous and increasing a.e. in Ω× [0, T ]. Furthermore, we assume
that there exists C1 > 0 such that sign ξf(x, t, ξ) ≥ −C1 for a.e. in
Ω× [0, T ].

(H4) For all M > 0, there exists CM > 0 such that, if |ξ|+ |ξ′| ≤M then

|f(x, t, ξ)− f(x, t, ξ′)|α ≤ CM (β(ξ)− β(ξ′))(ξ − ξ′),

where α =
{

2, 1 < p < 2,
p′, p ≥ 2.

(H5) For a.e. x ∈ Ω and for all M > 0, there exists C̃M > 0 such that if
t+ t′ + |ξ| ≤M then

|f(x, t, ξ)− f(x, t′, ξ)| ≤ C̃M |t− t′|1/α,

where α is as in (H4).

Definition 2.1. ([2]) Let X be a reflexive Banach space and A : X → X ′.
We say that A is monotone if 〈Ay − Az, y − z〉 ≥ 0 for all y, z ∈ X, and
hemicontinuous if for each y, z, w ∈ X the real-valued function t → 〈A(y +
tz), w〉 is continuous.

Lemma 2.2. (Minty theorem [13]) Let X be a reflexive Banach space. If
A : X → X ′ is monotone and hemicontinuous, then

Ay = f if and only if 〈f −Az, y − z〉 ≥ 0 for all z ∈ X.
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Lemma 2.3. ([3]) Let Ω be a bounded subset of Rd. Let 1 < p < ∞ be fixed
and A a nonlinear operator from W 1,p

0 (Ω) into its dual W−1,p′(Ω) defined by

A(u) = −div a(x, u,Du)

where a is a Caratheodory function satisfying (H2). Let g also be a Caratheodory
function such that

g(x, s, ξ)s ≥ 0 and |g(x, s, ξ)| ≤ b(|s|)(|ξ|p + c(x)),

where b is a continuous and increasing function with (finite) values on R+ and
c ∈ L1(Ω), (c ≥ 0). Then, for h ∈W−1,p′(Ω), the problem

Au+ g(x, u,∇u) = h, u ∈W 1,p
0 (Ω)

has at least one solution.

Lemma 2.4. ([11]) If u ∈W 1,p
0 (Ω) is a solution of the equation

−∆pu+ F (x, u) = T,

where T ∈ W−1,r, r > d/(p − 1) and F satisfies ξF (x, ξ) ≥ 0 in Ω × R, then
u ∈ L∞(Ω).

Finally, we state our main result as followings ;

Theorem 2.5. (A) Under assumptions (H1)–(H5), there exists

u ∈ Lp(0, T : W 1,p
0 (Ω)) ∩ L∞(0, T : L∞(Ω))

fulfilling (1) if p ≥ 2.
(B) Under assumptions (H1)–(H5), there exists

u ∈ L2(0, T : L2(Ω))

fulfilling (1) if 2d
2+d ≤ p < 2.

3. Existence of schemes

We consider the corresponding discrete scheme related to (1), which is rep-
resented by

β(ui)−β(ui−1)
τ − div a(x, ui,∇ui) + f(x, iτ, ui) = 0, in Ω,

vi = β(ui),
ui = 0, in ∂Ω,
β(u0) = β(u0), in Ω,

(4)

for i = 1, 2, . . . , N , where Nτ = T with a fixed positive number T .
We shall show that (4) has a solution ui, i = 1, 2, . . . , N .

Theorem 3.1. Assuming (H1), (H2), (H3), there exist unique solutions ui,
i = 1, 2, . . . , N , of (4) in W 1,p

0 (Ω) ∩ L∞(Ω) for sufficiently small τ .
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Proof. We may rewrite (4) as the equation

−τ div a(x, ui,∇ui) + β(ui) + τf(x, iτ, ui) + τC1sign(ui)
= β(ui−1) + τC1sign(ui), ui−1 ∈W 1,p

0 (Ω).

By setting

F (x, ui) = β(ui) + τf(x, iτ, ui) + τC1sign(ui) and
ϕi = β(ui−1) + τC1sign(ui),

F is a Caratheodory function such that uiF (x, ui) ≥ 0 and |F (x, ui)| ≤ β(|ui|)+
2τC1 by (H1) and (H3). Thus, by (H1), the second condition of Lemma 2.3
is satisfied. Since β is a continuous function and u0 ∈ L∞(Ω), there exists a
solution ui of (4) in W 1,p

0 (Ω) ∩ L∞(Ω) for i = 1, 2, . . . , N by Lemma 2.3 and
2.4.

Next, we shall show the uniqueness of the above ui. If ui and u∗i are two
solution of (4), then we obtain that

−τ div a(x, ui,∇ui) + τ div a(x, u∗i ,∇u∗i )
+β(ui)− β(u∗i ) + τf(x, iτ, ui)− τf(x, iτ, u∗i ) = 0. (5)

Multiplying (5) by ui − u∗i and integrating over Ω, we have

〈−τ div a(x, ui,∇ui) + τ div a(x, u∗i ,∇u∗i ), ui − u∗i 〉 (6)

+
∫

Ω

(τ(f(x, iτ, ui)− f(x, iτ, u∗i )) + (β(ui)− β(u∗i )))(ui − u∗i )dx = 0.

Then, we get by (H1) and (H3) that

〈−τ div a(x, ui,∇ui) + τ div a(x, u∗i ,∇u∗i ), ui − u∗i 〉 (7)

+τ
∫

Ω

−(β(ui)− β(u∗i ))(ui − u∗i )dx+
∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx ≤ 0.

By (H2), (7) is reduced to

(1− τ)
∫

Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx ≤ 0.

Hence, by (H1), we get ui = u∗i for sufficiently small τ . �

In the forthcoming discussion the following notation will be used expensively.
Letting {ui}Ni=0 be vectors, we denote by uτ and ūτ two functions of the time
interval [0, T ] which interpolate the values of the vector {ui}Ni=0 piecewise lin-
early and backward constantly on partition of diameter τ := T/N , respectively.
Namely, for t ∈ ((i− 1)τ, iτ ], i = 1, 2, . . . , N ,

uτ (0) := u0, uτ (t) := ui +
ui − ui−1

τ
(t− iτ),

ūτ (0) := u0, ūτ (t) := ui = u(·, iτ).
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Also, we let f̄τ (t) := fi = f(·, iτ, ui) for t ∈ ((i−1)τ, iτ ], i = 1, 2, . . . , N . Hence
we are entitled to rewrite (4) in a more compact form as v′τ − div a(ūτ ,∇ūτ ) + f̄τ = 0 a.e. in [0, T ],

v̄τ = β(ūτ ), a.e. in [0, T ],
β(ūτ (0)) = β(u0).

(8)

4. Estimates

Assuming the hypotheses (H1)–(H5) and p > 1, we shall show the bound
of the discrete scheme which satisfies (8) in this section. We begin the process
with the following theorem.

Theorem 4.1. Suppose (H1)–(H3). Then there exist C(C1, T, u0) > 0 and
C > 0 which are independent of τ such that for all i = 1, 2, . . . , N ,

(a) ||ui||∞ ≤ C(C1, T, u0),

(b) τ

m∑
i=1

||ui||p1,p ≤ C,

(c) ||β(um)||22 +
m∑
i=1

||β(ui)− β(ui−1)||22 ≤ C for all m = 1, 2, . . . , N .

Here, ui satisfies (4) for i = 1, 2, . . . , N .

Proof. (a) Multiplying the equation (4) by |β(ui)|kβ(ui) and integrating over
Ω, ∫

Ω

|β(ui)|kβ(ui)β(ui)dx−
∫

Ω

τdiva(x, ui,∇ui)|β(ui)|kβ(ui)dx

≤ ||β(ui)||k+1
k+2||β(ui−1)||k+2 +m(Ω)1/k+2

τC1||β(ui)||k+1
k+2

by Hölder’s inequality. Thus, we have

||β(ui)||k+2 ≤ m(Ω)1/k+2
τC1 + ||β(ui−1)||k+2.

By induction, we get ||β(ui)||k+2 ≤ m(Ω)1/k+2
C1T + ||β(u0)||k+2. As k →∞,

||ui||∞ ≤ C(C1, T, u0) by (H1).
(b) Let z ∈ W 1,p

0 (Ω) ∩ L∞(Ω) be fixed. Multiplying the equation (4) by
ui − z and integrating over Ω,

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+ τα||ui||p1,p

≤ τ
∫

Ω

γ[|ui|p−1 + |∇ui|p−1 + k(x)]|∇z|dx+ τC1

∫
Ω

|ui − z|dx.
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by (H2) and (H3). We apply the Young’s inequality to get

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+
τα

2
||ui||p1,p

≤ (τ + τ2)C(α, γ, λ1, p)||z||p1,p + τC1||ui||∞m(Ω)

+τC1||z||∞m(Ω) +
τ2

p′
Cp
′

1 m(Ω) + 2pλ1
τ

p

i∑
j=1

τ ||uj ||p1,p +
τ

p′
||k||p

′

Lp′ (Ω)
,

for i = 1, 2, . . . ,m and m = 1, 2, . . . , N . Applying∫
Ω

ψ∗(β(ui))− ψ∗(β(ui−1))dx ≤
∫

Ω

(β(ui)− β(ui−1))uidx (9)

and then summing up from i = 1 to i = m for m = 1, 2, . . . , N , we obtain∫
Ω

ψ∗(β(um))− ψ∗(β(u0))dx− 〈β(um)− β(u0), z〉+
τα

2

m∑
i=1

||ui||p1,p

≤ C2 + C3τ

m∑
i=1

i∑
j=1

τ ||uj ||p1,p,

where C2 = C(T, α, γ, p, λ1, C1, C(C1, T, u0),m(Ω), ||z||∞, ||z||1,p, ||k||Lp′ (Ω)) and
C3 = C(λ1, p) by Theorem 4.1(a). For sufficiently small τ < τ̄ = α/4C3,∫

Ω

ψ∗(β(um))dx− 〈β(um), z〉+
τα

4

m∑
i=1

||ui||p1,p

≤
∫

Ω

ψ∗(β(u0))dx− 〈β(u0), z〉+ C2 + C3τ

m−1∑
i=1

i∑
j=1

τ ||uj ||p1,p.

By the discrete Gronwall’s lemma, we have∫
Ω

ψ∗(β(um))dx− 〈β(um), z〉+
τα

4

m∑
i=1

||ui||p1,p

≤ C(β(u0), T, α, γ, p, λ1, C1, C(C1, T, u0),m(Ω), ||z||∞, ||z||1,p, ||k||Lp′ (Ω)).

Since
∫

Ω
ψ∗(β(ui))dx− 〈β(ui), z〉 > −∞, we finally get τ

∑m
i=1||ui||

p
1,p ≤ C.

(c) Multiplying the equation (4) by β(ui) and integrating over Ω,∫
Ω

1
2
|β(ui)|2 −

1
2
|β(ui−1)|2 +

1
2
|β(ui)− β(ui−1)|2dx ≤ C1τ

∫
Ω

|β(ui)|dx.

by (H2). Here we have used the equality a(a − b) =
1
2
a2 − 1

2
b2 +

1
2

(a− b)2.
Then we get

||β(ui)||22 − ||β(ui−1)||22 + ||β(ui)− β(ui−1)||22 ≤ 2C1τ ||β(ui)||1.
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Summing the above inequality with respect to i = 1, 2, . . . ,m for arbitrary
m = 1, 2, . . . , N ,

||β(um)||22 +
m∑
i=1

||β(ui)− β(ui−1)||22 ≤ 2C1Tm(Ω)C(C1, T, u0) + ||β(u0)||22.

Thus we have our result such as

||β(um)||22 +
m∑
i=1

||β(ui)− β(ui−1)||22 ≤ C

. �

From the above results we may conclude that

ūτ is bounded in Lp(0, T : W 1,p
0 (Ω)) ∩ L∞(0, T : L∞(Ω)), (10)

vτ is bounded in C(0, T : L2(Ω)), (11)

−div a(ūτ ,∇ūτ ) is bounded in Lp
′
(0, T : W−1,p′(Ω)), (12)

where all of bounds are independent of τ .
From now on, we devote to show the existence of a bound for v′τ . At fist,

we consider for the case of p ≥ 2. By (H4) and (H5),

N∑
i=1

∫ iτ

(i−1)τ

||f(x, t, u)− f(x, t, ūτ )||p
′

−1,p′dt

≤ λ1
p′

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

CM (β(u)− β(ūτ ))(u− ūτ )dxdt

≤ λ1
p′CMτ(

∫ T

0

||u||2||
∂β

∂s
||2 + ||ūτ ||2||

∂β

∂s
||2dt)

≤ λ1
p′CMτ(||u||L2(0,T :L2(Ω)) + ||ūτ ||L2(0,T :L2(Ω)))||

∂β

∂s
||L2(0,T :L2(Ω))

≤ C̃1/p′

M τ

N∑
i=1

∫ iτ

(i−1)τ

λp
′

4 dt = C̃
1/p′

M τλp
′

4 T,

where u is the weak limit of ūτ . It implies that

||f̄τ (x, t, ūτ )− f(x, t, u)||p
′

Lp′ (0,T :W−1,p′ (Ω))
(13)

≤ 2p
′
(λ1

p′CMτ(||u||L2(0,T :L2(Ω))

+||ūτ ||L2(0,T :L2(Ω)))||
∂β

∂s
||L2(0,T :L2(Ω)) + C̃

1/p′

M τλp
′

4 T ).

Applying (12) and (13) to (8), we conclude that for p ≥ 2

v′τ is bounded in Lp
′
(0, T : W−1,p′(Ω)). (14)
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Now, we consider for the case of 1 < p < 2. As before, by (H4) and (H5),
we also have

N∑
i=1

∫ iτ

(i−1)τ

||f(x, t, u(x, t))− f(x, t, ūτ (x, t))||22dt

≤
N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

CM (β(u)− β(ūτ ))(u− ūτ )dxdt

≤ τCM (||u||L2(0,T :L2(Ω)) + ||ūτ ||L2(0,T :L2(Ω)))||
∂β

∂s
||L2(0,T :L2(Ω))

≤
N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

(C̃M |t− iτ |1/2)2dxdt ≤ TC̃2
Mτm(Ω),

where u is weak convergence of ūτ . Hence

||f̄τ (x, t, ūτ )− f(x, t, u)||2L2(0,T :L2(Ω)) (15)

≤ 2(τCM (||u||L2(0,T :L2(Ω))

+||ūτ ||L2(0,T :L2(Ω)))||
∂β

∂s
||L2(0,T :L2(Ω)) + TC̃2

Mτm(Ω)).

We also conclude that for 1 < p < 2

v′τ is bounded in L2(0, T : L2(Ω)). (16)

5. Limits

In this section, we show the existence of limits of discrete schemes using the
priori estimates which are obtained in the previous sections. Since we have the
similar results for both cases, p ≥ 2 and 1 < p < 2, we shall give the proof for
the case of p ≥ 2 in detail, and then we accept the same result without proof
for the case of 1 < p < 2.

We assume that p ≥ 2. From the priori estimates (10), (11), (13) and (14),
we find functions u ,v and f such that, for some not relabeled subsequence,

ūτ → u weakly in Lp(0, T : W 1,p
0 (Ω)) ∩ L∞(0, T : L∞(Ω)), (17)

vτ → v weakly in W 1,p′(0, T : W−1,p′(Ω)), (18)
vτ → v strongly in C(0, T : L2(Ω)),

v̄τ → v weakly in Lp
′
(0, T : W−1,p′(Ω)), (19)

v̄τ → v strongly in L∞(0, T : L2(Ω)),

f̄τ → f strongly in Lp
′
(0, T : W−1,p′(Ω)). (20)
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Of course, by (14), vτ and v̄τ have the same limit since∫ T

0

〈u, v̄τ − vτ 〉dt ≤ τ
N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

u(t)(
vi − vi−1

τ
)dxdt

= τ

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

u(t)v′τ (t)dxdt = τ

∫ T

0

〈u, v′τ 〉dt

for all u ∈ Lp(0, T : W 1,p
0 (Ω)). And, since β(ūτ ) = v̄τ , by (17), (19), (H1) and

Lemma 2.2, v = β(u). By (9), we get

lim sup
τ→0

∫ T

0

〈−div a(x, ūτ ,∇ūτ ), ūτ 〉dt

≤ lim sup
τ→0

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

−ψ∗(β(ui)) + ψ∗(β(ui−1))
τ

dxdt

+ lim sup
τ→0

∫ T

0

∫
Ω

− f̄τ ūτdxdt.

Using the fact

ψ∗(β(u(iτ)))− ψ∗(β(u((i− 1)τ))) =
∂ψ∗

∂s
(β(u(σ)))(iτ − (i− 1)τ)

for σ ∈ ((i− 1)τ, iτ ], by (17) and (20),

lim sup
τ→0

∫ T

0

〈− div a(x, ūτ ,∇ūτ ), ūτ 〉dt

≤ lim sup
τ→0

N∑
i=1

∫ iτ

(i−1)τ

1
τ

∫
Ω

− τ ∂ψ
∗(β(u(s)))
∂s

dxdt+
∫ T

0

〈−f, u〉dt

=
∫ T

0

∫
Ω

− ∂ψ∗(β(u(s)))
∂s

dxdt+
∫ T

0

〈−f, u〉dt.

But, since ψ(t) =
∫ t

0
β(s)ds, ψ′(t) = β(t). Using (ψ∗)′ = (ψ′)−1, we have

lim sup
τ→0

∫ T

0

〈− div a(x, ūτ ,∇ūτ ), ūτ 〉dt ≤
∫ T

0

〈−∂β
∂t
− f, u〉dt.

By Lemma 2.2, for p ≥ 2 there exist a solution u of (1) such that

u ∈ Lp(0, T : W 1,p(Ω)) ∩ L∞(0, T : L∞(Ω)).

For the case of 1 < p < 2, since we have the priori estimates (10), (11), (15)
and (16), we also have functions u, v and f such that

ūτ → u strongly in L2(0, T : L2(Ω)),
vτ → v strongly in W 1,2(0, T : L2(Ω)) ∩ C(0, T : L2(Ω)),
v̄τ → v strongly in L2(0, T : L2(Ω)) ∩ L∞(0, T : L2(Ω)),
f̄τ → f strongly in L2(0, T : L2(Ω)).
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Therefore, by similar steps of the above process, we conclude that for 1 < p < 2
there exist a solution u such that

u ∈ L2(0, T : L2(Ω)).

Remark 5.1. Under the assumptions (H1), (H3), (H4) and (H5) (without using
the condition that f is increasing), we can prove the existence of the solution
of (2) by the above method similarly.
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