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DOUBLY NONLINEAR VOLTERRA EQUATIONS

INVOLVING THE LERAY-LIONS OPERATORS

Kiyeon Shin* and Sujin Kang

Abstract. In this paper we consider a doubly nonlinear Volterra equa-

tion related to the Leray-Lions with a nonsmooth kernel. By exploiting

a suitable implicit time-discretization technique we obtain the existence
of global strong solution.

1. Introduction

In this paper, we study a doubly nonlinear Volterra partial differential equa-
tion involving the Leray-Lions operator. More precisely, we are interested in
the existence and uniqueness of the solution of problem

∂β(u)

∂t
− div[a(x,u,∇u) + k ∗ a(x,u,∇u)]

+f(x, t, u) = 0 in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u = u0 on Ω× {t = 0}, (1)

where −div[a(x,u,∇u)] = Au is the Leray-Lions operator, k ∈ BV (0, T ), β
is a nonlinearity of porous medium type and f is a nonlinearity of reaction
diffusion type. A prime example of div[a(x, u,∇u)] is p-Laplacian ∆pu =
div[|∇u|p−2∇u], 2 ≤ p < ∞. The convolution sign has to be understood
in sense of the standard product in (0, t) ⊂ (0, T ) where T > 0 denotes some

reference final time. In particular, (a ∗ b)(t) =
∫ t

0
a(t − s)b(s)ds whenever it

makes sense. Let Ω be a regular open bounded set of Rd, d ≥ 1 and ∂Ω its
boundary.

The problem (1) has a relevant interest within applications since it arises
in nonlinear diffusion phenomena including nonlocal time effect. For example,
we consider a substance which fills the region Ω ⊂ R3 and may undergo a
temperature driven phase transformation. We assume that our thermodynamic
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system is insulated from the exterior and fix as state variable the (relative)
temperature θ of the medium. By the energy balance relation, we have the
equation

et + div[q] = g in Ω× (0, T ),

where e is the internal energy of system (enthalpy), q is the heat flux and g is
a given density of heat source.

Since the heat flux is the datum of an actual contribution (k0 > 0 represents
an instantaneous heat conductivity) and an accumulated history averaged by
means a suitable kernel K1, we choose the following

q(t) = k0|∇θ|p−2∇θ(t)−
∫ t

0

K1(t, s)∇θ(s)ds.

Therefore, the equation becomes one of type (1).
Let us now try to give brief comment on the current literature for doubly

nonlinear Volterra equations of the type (1). Of course the local-in-time case
k = 0 in (1) has been deeply discussed by Alt and Luckhaus [2], J.I. Diaz and
J.F. Padial [5], A. Eden, B. Michaux and J.M. Rakotoson [6, 7], A. El Hachimi
and H. El Ouardi [8], Ivanov and Rodrigues [10], Otto [11], A. Rougirel [12],
M. Schatzman [13] and K. Shin and S. Kang [14] in various methods. For the
nonlocal case k 6= 0, Stefanelli [17] studied in case of β = I, −div[a(x, u,∇u)] =
−∆u and k ∈ W 1,1(0, T ) in Hilbert space. Also, [18] is studied where β is
maximal monotone, k ∈ L1(0, T ) and f ∈ Lq(0, T ;V ∗) where q is conjugate
of p and V ∗ is dual of reflexive Banach space. Moreover, when β is maximal
monotone and k ∈ BV (0, T ) with f ∈ Lq(0, T ;V ∗), it has been considered by
Gilardi and Stefanelli [9].

This is the plan of paper. We recall our assumptions and state main results
in section 2. In section 3, we show the existence of discrete scheme. After
showing some estimates on the approximations, the passage to the limit and
the existence results are given in section 4.

2. Assumptions and main result

We let || · ||p, || · ||1,p, || · ||−1,p and || · ||X denote the norm in Lp(Ω), W 1,p(Ω),
W−1,p(Ω) and X (1 ≤ p ≤ ∞), respectively. < ·, · > denotes the duality

between W 1,p
0 (Ω) and W−1,p′(Ω) or inner product of L2(Ω). For p ≥ 2, we

define p′ by 1
p + 1

p′ = 1. In this paper, Ci and C will denote positive constants

and λ1, λ2 imbedding constants. (cf. [1])
Let u0 ∈ L∞(Ω) and β be a continuous function with β(0) = 0. For t ∈ R,

define ψ(t) =
∫ t

0
β(s)ds. The Legendre transform of the convex function ψ is

defined as ψ∗(τ) = sups∈R{τs− ψ(s)}.
Now, we prepare assumptions, well known definitions and lemmas which

have used throughout this paper.
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First of all, for any u ∈ L1(0, T ), let us set

V ar(u) := sup

{∫ T

0

uϕ
′
|ϕ ∈ C1

0 , ‖ϕ‖L∞(0,T ) ≤ 1

}
,

and
BV (0, T ) := {u ∈ L1(0, T ) |V ar(u) <∞}.

The latter turns out to be a Banach space whenever endowed with the norm

||u||BV (0,T ) := ||u||1 + V ar(u).

For all u ∈ BV (0, T ), there exist a right-continuous function ũ such that ũ = u
almost everywhere in (0, T ) and

V ar(u) = V ar(ũ) = sup

{
N∑
i=2

|ũ(ti)− ũ(ti−1)| for 0 < t1 < · · · < tN < T

}
.

One should notice that ũ is bounded and can be represented as the difference
two (bounded) monotone functions. In particular, ũ turns out to admit right
(left) limit in 0 (T ), respectively. Hence, by defining ũ(0) := ũ(0+) and ũ(T ) :=
ũ(T−) with obvious notions, one readily has that

V ar(ũ) = sup

{
N∑
i=1

|ũ(ti)− ũ(ti−1)| for 0 = t0 < · · · < tN = T

}
,

as well.
We suppose that u0 ∈ L∞(Ω) with u0 = 0 on ∂Ω and the followings ;

(H1) The function β is increasing and continuous from R to R and β(0) = 0.
(H2) a(x, s, ξ) is a Caratheodory function a : Ω× × Rd → Rd such that

|a(x, s, ξ)| ≤ γ[|s|p−1 + |ξ|p−1 + l(x)],

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, for ξ 6= η,

a(x, s, ξ)ξ ≥ α|ξ|p,

where l ∈ Lp′(Ω), l ≥ 0, γ > 0 and α > 0.
(H3) For ξ ∈ R, the map (x, t) 7→ f(x, t, ξ) is measurable and ξ 7→ f(x, t, ξ)

is continuous a.e. in Ω × [0, T ]. Furthermore, we assume that there
exits C1 > 0 such that sign ξf(x, t, ξ) ≥ −C1 for a.e. (x, t) ∈ Ω× [0, T ]
and there exits C2 > 0 such that ξ 7→ f(x, t, ξ) + C2β(ξ) is increasing
for almost (x, t) ∈ Ω× [0, T ].

(H4) For all M > 0, there exists CM > 0 such that, if |ξ|+ |ξ′| ≤M then

|f(x, t, ξ)− f(x, t, ξ′)|p
′
≤ CM (β(ξ)− β(ξ′))(ξ − ξ′).

(H5) For almost every x ∈ Ω and for all M > 0, there exists C̃M > 0 such
that, if t+ t′ + |ξ| ≤M then

|f(x, t, ξ)− f(x, t′, ξ)| ≤ C̃M |t− t′|1/p
′
.

(H6) k ∈ BV (0, T ).
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Definition 1. ([3]) Let X be a reflexive Banach space and A : X → X ′ be
an operator. We say that A is monotone if 〈Ay − Az, y − z〉 ≥ 0 ∀y, z ∈ X,
and hemicontinuous if for each y, z, w ∈ X the real-valued function t→ 〈A(y+
tz), w〉 is continuous.

Lemma 2.1. (Minty theorem [15]) If X is a reflexive Banach space and A :
X → X ′ X is monotone and hemicontinuous, then

Ay = f if and only if 〈f −Az, y − z〉 ≥ 0 for all z ∈ X.
Lemma 2.2. ([4]) Let Ω be a bounded set in Rd. Let 1 < p <∞ be fixed and

A : W 1,p
0 (Ω)→W 1,p′(Ω) be a nonlinear operator defined by

A(u) = −div a(x, u,Du)

where a(x, s, ξ) is a Carathéodory function a : Ω× R× Rd → Rd such that

|a(x, s, ξ)| ≤ γ[|s|p−1 + |ξ|p−1 + l(x)],

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, ξ 6= η,

a(x, s, ξ)ξ ≥ α|ξ|p,

where l(x) ∈ Lp′(Ω), l ≥ 0, γ > 0 and α > 0.
Let g(x, s, ξ) be a Carathéodory function such that

g(x, s, ξ)s ≥ 0,

|g(x, s, ξ)| ≤ b(|s|)(|ξ|p + c(x)),

where b is a continuous and increasing function with (finite) values on R+ and

c ∈ L1(Ω), c ≥ 0. Then, for h ∈W−1,p′(Ω), the problem

Au+ g(x, u,∇u) = h,

has at least one solution u ∈W 1,p
0 (Ω).

The main theorem is the following.

Theorem 2.3. Under assumptions (H1)−(H6), there exist u ∈ Lp(0, T ;W 1,p
0 (Ω))

fulfilling (1) if p ≥ 2.

3. Time-discretization

Let us start by fixing a uniform partition of the time interval [0, T ] by choos-
ing a constant time-step τ = T/N, N ∈ N.

3.1. Discrete convolution and Approximation of the kernel

Definition 2. ([9]) Let a = {ai}Ni=1 be a real vector and b = {bi}Ni=1 ∈
EN , where E stands for a real linear space. Then, we define the vector
{(a∗τ b)i}Ni=0 ∈ EN+1 as

(a ∗τ b)i :=

{
0, if i = 0,

τ
∑i
j=1 ai−j+1bj , if i = 1, 2, . . . , N.



DOUBLY NONLINEAR VOLTERRA EQUATIONS 73

Let us list some properties of the latter discrete convolution product. First
of all, we readily check that, for all a = {ai}Ni=1, b = {bi}Ni=1 ∈ RN and
c = {ci}Ni=1 ∈ EN , one has

(a ∗τ b) = (b ∗τ a), ((a ∗τ b) ∗τ c) = (a ∗τ (b ∗τ c)).

In the forthcoming discussion, the following notations will be used extensively.
Letting {ui}Ni=0 be vector, we denote by uτ and ūτ two functions on the time in-
terval [0, T ] which interpolate the values of the vector {ui}Ni=0 piecewise linearly
and backward constantly on partition of diameter, respectively. Namely,

uτ (0) := u0, uτ (t) := ui +
ui − ui−1

τ
(t− iτ),

ūτ (0) := u0, ūτ (t) := ui = u(·, iτ)

for t ∈ ((i− 1)τ, iτ ], i = 1, 2, . . . , N . Let us also set f̄τ (t) := fi = f(·, iτ, ui) for

t ∈ ((i− 1)τ, iτ ], vi = β(ui) and δui =
ui − ui−1

τ
for i = 1, 2, . . . , N . Then, of

course δu stands for the vector {δui}Ni=1 owing to the previous notation. It is
not difficult to check the following equality holds.

(a ∗τ b)τ (t) = (āτ ∗ b̄τ )(iτ) for t ∈ ((i− 1)τ, iτ ], i = 1, 2, . . . , N.

Moreover, the function āτ ∗ b̄τ is piecewise affine on the time partition. The
reader should note that the above discussion yields. In particular,

(a ∗τ b)τ = āτ ∗ b̄τ in [0, T ].

Now, we recall a discrete version of Young’s theorem and properties which are
needed in the following.

Lemma 3.1. (Discrete Young theorem [17]) Let {ai}Ni=0 ∈ RN , {bi}Ni=1 ∈ EN ,
where E denotes a real linear space endowed with the norm || · ||E . Moreover,
let p, q, r ∈ [1,∞] such that

1 +
1

r
=

1

p
+

1

q
,

along with the standard convention 1/∞ = 0. Then the following inequality
holds

‖(a ∗τ b)τ‖Lr(0,T ;E) ≤ ‖āτ ||Lp(0,T ;E)‖b̄τ‖Lq(0,T ;E).

With help of Lemma 3.1, we have the following.

Proposition 3.2. ([9]) Let r ∈ [1,∞], {ai}Ni=0 ∈ RN+1 and {bi}Ni=1 ∈ EN ,
where E denotes a real Banach space. Then, we have

‖(a ∗τ b)τ − āτ ∗ b̄τ‖Lr(0,T ;E) ≤ τCr(V ar(aτ ) + |a0|)‖b̄τ‖Lr(0,T ;E),

where Cr := (1 + r)−1/r, for r ∈ [1,∞) and C∞ := 1.

Using Lemma 3.1 and Proposition 3.2, we have very useful result by suitable
passing to limits within discrete convolution products.
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Theorem 3.3. ([9]) Let r ∈ [1,∞] and E be a real reflexive Banach space.
If āτ → a strongly in L1(0, T ), aτ are equibounded in BV (0, T ), and b̄τ → b

weakly star (strongly) in Lr(0, T ;E), then (a ∗τ b)τ → a∗b weakly star (strongly,
respectively) in Lr(0, T ;E).

Let us restrict ourselves to the case of a kernel k : [0, T ]→ R such that

Var(k) = sup

{ N∑
i=0

|k(ti)− k(ti−1)| for 0 = t0 < · · · < tN = T

}
.

and

ki := k(iτ) for i = 0, 1, . . . , N, (2)

whence it is a standard matter to verify that

||k − k̄τ ||L1(0,T ) ≤ Var(k).

Moreover, we readily check that

||kτ ||C[0,T ] ≤ ||k||L∞(0,T ) and Var(kτ ) ≤ Var(k),

independently of τ . For notational convenience, we will use the same symbol
for the function k and the vector k = {ki}Ni=0 whenever the latter is involved
in a discrete convolution product. We shall look for a vector {ρi}Ni=0 ∈ RN+1

such that

ρi + (k ∗τ ρ)i = ki for i = 0, 1, . . . , N. (3)

The latter linear system may be solved whenever τ is small enough. Namely,
ρ0 = k0 = k(0), it is straightforward to check that the remaining N ×N linear
system is lower-triangular and its determinant reads (1 + τk1)N . Hence, the
latter is solvable whenever we have, for instance,

τ |k1| ≤
1

2
, (4)

which, taking into account (H5) and definition (2), holds at least for small τ .
We shall collect some properties of ρ in the following proposition.

Proposition 3.4. ([9]) Let (H6) and (4) hold and {ρi}Ni=0 ∈ RN+1 be defined
as above. Then

ρτ are uniformly bounded in BV (0, T ) in terms of ||k||BV (0,T ),

||ρτ − ρ̄τ ||L1(0,T ) =
τ

2
V ar(ρτ ),

ρτ → ρ strongly in L1(0, T ), ρ ∈ BV (0, T ),

and ρ+ k ∗ ρ = k a.e. in(0, T ).

Finally, owing to (3), we readily check that, given {ai}Ni=1, {bi}Ni=1 ∈ EN

where E is some real linear space,

ai + (k ∗τ a)i = bi ⇔ bi − (ρ ∗τ b)i = ai for i = 1, . . . , N. (5)
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Hence, let us conclude that, for all a, b ∈ L1(0, T : E), and {ai}Ni=1, {bi}Ni=1 ∈
EN , we have the following

a+ (k ∗ a) = b a.e. in (0, T ) ⇔ b− (ρ ∗ b) = a a.e. in (0, T ),

āτ + (k ∗τ a)τ = b̄τ a.e. in (0, T ) ⇔ b̄τ − (ρ ∗τ b)τ = āτ a.e. in (0, T ).

3.2. Existence of Discrete scheme

For (1), we consider the discrete scheme (DS) for i = 1, 2, . . . , N,

β(ui)− β(ui−1)

τ
− diva(ui,∇ui)− (k ∗τ diva(u,∇u))i + f(x, iτ, ui) = 0,

vi = β(ui) in Ω,

ui = 0 in ∂Ω,

u0 = u0 in Ω.

where Nτ = T , T a fixed positive real. We shall show that (DS) has a solution
ui, i = 1, 2, . . . , N.

Theorem 3.5. Assume that (H1)− (H3), (H6) and (4) holds. Then for i =

1, 2, . . . , N , there exists a unique solution ui ∈W 1,p
0 (Ω) of (DS) for sufficiently

small τ .

Proof. First of all, we rewrite (DS) as

−τ(1 + τk1)diva(ui,∇ui) + F (x, ui) = ϕi−1,

where F (x, ui) = β(ui) + τf(x, iτ, ui) +τC1sign(ui) and ϕi−1 = β(ui−1) +

τC1sign(ui) + τ2
∑i−1
j=1ki−j+1diva(uj ,∇uj).

Now, we consider the equation

−τ(1 + τk1)diva(u,∇u) + F (x, u) = ϕ0 = β(u0) + τC1sign(u), (6)

where F (x, u) = β(u) + τf(x, τ, u) + τC1sign(u) for fixed τ = T/N . It
is obvious that a(x, u,Du) satisfies all the three conditions of a in Lemma
2.2, by (4). Since β is continuous, ϕ0 ∈ L∞(Ω). And, by (H1) and (H3),
g(x, u,∇u) := F (x, u) is a Carathéodory function with uF (x, u) ≥ 0. Also, by
(H3), |F (x, u)| ≤ β(|u|) + 2τC1. Thus, all the conditions of g in Lemma 2.2

are satisfied. Therefore, there exists a solution u ∈ W 1,p
0 (Ω) of (DS). We put

u1 := u and consider the equation −τ(1 + τk1)diva(u,∇u) + F (x, u) = ϕ1 =
β(u1) + τC1sign(u) + τ2kidiva(u1,∇u1) where F (x, u) = β(u) + τf(x, 2τ, u) +
τC1sign(u). Continuing this process, we have a solution ui of (6) for i =

1, 2, . . . , N such that ui ∈W 1,p
0 (Ω) (i = 1, 2, . . . , N).

Next, we show the uniqueness of ui (i = 1, 2, . . . , N). Let ui and u∗i be two
solutions of (DS) for i = 1, 2, . . . , N . Then we obtain that

−(τ + τ2k1)diva(ui,∇ui) + (τ + τ2k1)diva(u∗i ,∇u∗i ) + β(ui)− β(u∗i )

+τf(x, iτ, ui)− τf(x, iτ, u∗i ) = 0. (7)
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Multiplying (7) by ui − u∗i and integrating over Ω, gives

〈−(τ + τ2k1)diva(ui,∇ui) + (τ + τ2k1)diva(u∗i ,∇u∗i ), ui − u∗i 〉

+

∫
Ω

{τ(f(x, iτ, ui)− f(x, iτ, u∗i )) + (β(ui)− β(u∗i ))}(ui − u∗i )dx

= 0. (8)

Then, from (H3), we have∫
Ω

(f(x, iτ, ui)− f(x, iτ, u∗i ))(ui − u∗i )dx ≥ −C2

∫
Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx.

Applying the above inequality to (8), by (H2),

(1− τC2)

∫
Ω

(β(ui)− β(u∗i ))(ui − u∗i )dx ≤ 0.

Then by (H1), if τ < 1/C2, we get ui = u∗i . �

Now, we consider the bounds of {ui} (i = 1, 2, . . . , N), which is constructed
in Theorem 3.5 as solutions of (DS).

Theorem 3.6. Assume (H1)−(H3) and (H6). Then there exist C3, C4, which
are positive constants and independent of τ , such that for all i = 1, 2, . . . ,m,

(a) τ

m∑
i=1

||ui||p1,p ≤ C3,

(b) ||β(um)||22 +

m∑
i=1

||β(ui)− β(ui−1)||22 ≤ C4,

m = 1, 2, . . . , N .

Proof. (a) Let z ∈ W 1,p
0 (Ω) be fixed and multiplying the equation (DS) by

ui − z and integrating over Ω and by (H2) and (H3), we obtain

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+ ατ ||ui||p1,p

≤ τC1

∫
Ω

|ui − z|dx+ τ

∫
Ω

γ(|ui|p−1 + |∇ui|p−1 + l(x))|∇z|dx

+τ ||(k ∗τ diva(u,∇u))i||−1,p′ ||ui − z||1,p. (9)

Applying (9) to discrete Young’s inequality,

〈β(ui)− β(ui−1), ui〉 − 〈β(ui)− β(ui−1), z〉+ ατ ||ui||p1,p
≤ ατ

2
||ui||p1,p + τC(α, p, ||z||1,p, ||l||p′ , λ1, C1,m(Ω))

+τ(
αp

2p+3
)−

p′
p (p′)−1||(k ∗τ diva(u,∇u))i||p

′

−1,p′
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≤ ατ

2
||ui||p1,p + τC(α, p, ||z||1,p, ||l||p′ , λ1, C1,m(Ω))

+τC(p, α, ||k||L∞(0,T ), γ, λ1)

i∑
j=1

τ ||uj ||p1,p (10)

for i = 1, 2, . . . ,m and for arbitrary m = 1, 2, . . . , N . Since∫
Ω

ψ∗(β(ui))− ψ∗(β(ui−1))dx ≤
∫

Ω

(β(ui)− β(ui−1))uidx

and by (10),∫
Ω

ψ∗(β(ui))− ψ∗(β(ui−1))dx− 〈β(ui)− β(ui−1), z〉+
ατ

2
||ui||p1,p

≤ τC5 + τC6

i∑
j=1

τ ||uj ||p1,p,

for i = 1, 2, . . . ,m and where C5 = C(α, p, ||z||1,p, ||l||p′ , λ1, C1,m(Ω)) and C6 =
C(p, α, ||k||L∞(0,T ), γ, λ1).Then summing the above inequality with respect to
i = 1, 2, . . . ,m,∫

Ω

ψ∗(β(um))dx− 〈β(um), z〉+
ατ

2

m∑
i=1

||ui||p1,p

≤
∫

Ω

ψ∗(β(u0))dx− 〈β(u0), z〉+ C5T + τC6

m∑
i=1

i∑
j=1

τ ||uj ||p1,p, (11)

for m = 1, 2, . . . , N . By (11) and for arbitrary τ < τ̄ = α/4C6 and applying
the discrete Gronwall lemma,∫

Ω

ψ∗(β(um))dx− 〈β(um), z〉+
τα

4

m∑
i=1

||ui||p1,p

≤ C(α, p, ||z||1,p, ||l||p′ , λ1, C1,m(Ω), ||k||L∞(0,T ), γ, T ).

Hence by
∫

Ω
ψ∗(β(ui))dx− 〈β(ui), z〉 > −∞, τ

∑m
i=1||ui||

p
1,p ≤ C3.

(b)From (5) and (DS), and since (ρ ∗τ δv)i = (δρ ∗τ v)i + ρ0vi − ρiv0,

β(ui)− β(ui−1)− τdiva(ui,∇ui) (12)

= −τfi + τ(ρ ∗τ f)i + τ(δρ ∗τ β(u))i + τρ0β(ui)− τρiβ(u0).

Multiplying the equation (12) by β(ui) and integrating over Ω and by (H2)and
1
2 (a− b)2 + 1

2 (a)2 − 1
2 (b)2 = (a− b)a,

||β(ui)− β(ui−1)||22 + ||β(ui)||22 − ||β(ui−1)||22
≤ C2

1τm(Ω) + τ(3 + 2|ρ0|+ |ρ̄τ |L∞(0,T ))||β(ui)||22
+τ |ρ̄τ |L∞(0,T )||β(u0)||22 + τ ||(ρ ∗τ f)i||22 + τ ||(δρ ∗τ β(u))i||22. (13)
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Then summing(13) with respect to i = 1, 2, . . . ,m,

m∑
i=1

||β(ui)− β(ui−1)||22 + ||β(um)||22 − ||β(u0)||22

≤ C2
1Tm(Ω) + τ(3 + 2|ρ0|+ |ρ̄τ |L∞(0,T ))

m∑
i=1

||β(ui)||22

+|ρ̄τ |L∞(0,T )||β(u0)||22T + τ

m∑
i=1

||(ρ ∗τ f)i||22

+τ

m∑
i=1

||(δρ ∗τ β(u))i||22, (14)

for arbitrarym = 1, 2, . . . , N . Since τ
∑m
i=1||(ρ∗τf)i||22 ≤ 3T 3|ρ̄τ |2L∞(0,T )C

2
1m(Ω)

and by Lemma 3.1, τ
∑m
i=1||(δρ∗τ β(u))i||22 ≤ m(Ω)(V ar(ρ))2(

∑m
i=1τ ||β(ui)||22)

and from (14),

m∑
i=1

||β(ui)− β(ui−1)||22 + ||β(um)||22 ≤ C7 + C8

m∑
i=1

τ ||β(ui)||22, (15)

for arbitrary m = 1, 2, . . . , N , where C7 = C(C1, T,m(Ω), |ρ̄τ |L∞(0,T ), β(u0))
and C8 = C(m(Ω), |ρ̄τ |L∞(0,T ), |ρ0|, V ar(ρ)). By (15) and discrete Gronwall
Lemma to the above inequality for arbitrary τ < τ̄ = 1/2C8,

||β(um)||22 +

m∑
i=1

||β(ui)− β(ui−1)||22 ≤ C4.

�

Hence we are entitled to rewrite (DS) in a more compact form as

v′τ − diva(ūτ ,∇ūτ )− (k ∗τ diva(u,∇u))τ + f̄τ = 0 a.e. in [0, T ],

v̄τ = β(ūτ ) a.e. in [0, T ]. (16)

4. Estimate and limits

In this section, we assume the hypotheses (H1), (H2) and (H4)-(H6).

4.1. Estimate
First of all, by the consequence of Theorem 3.6, the followings are very easily
proven.

ūτ is bounded in Lp(0, T ;W 1,p
0 (Ω)), (17)

vτ is bounded in C(0, T ;L2(Ω)). (18)

Moreover, by (17) and (H2),

−diva(ūτ ,∇ūτ ) is bounded in Lp
′
(0, T ;W−1,p′(Ω)). (19)
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We emphasis that all the above boundedness are independent of τ . By (17),

we have u ∈ Lp(0, T ;W 1,p
0 (Ω)) which is a weak limit of ūτ as τ → 0. i.e., ūτ

converges weakly to u as τ → 0 in Lp(0, T ;W 1,p
0 (Ω)). Moreover, by Theorem

3.6(b) we may use the term w(x) := supt∈[0,T ]
∂β(u(x,t))

∂t which is bounded in

L2(Ω) a.e.

Now, we consider the boundedness of v′τ . By (H4) and Theorem 3.6(b),

N∑
i=1

∫ iτ

(i−1)τ

||f(x, t, u)− f(x, t, ūτ )||p
′

−1,p′dt

≤
N∑
i=1

∫ iτ

(i−1)τ

{ sup
||v||1,p≤1

(

∫
Ω

|v(x)|pdx)
1
p (

∫
Ω

|f(x, t, u)−f(x, t, ūτ )|p
′
dx)

1
p′ }p

′
dt

≤ λ1
p′CMτ

N∑
i=1

∫ iτ

(i−1)τ

(||u||2 + ||ūτ ||2) ‖w‖2dt

≤ λ1
p′CMτ(||u||L2(0,T ;L2(Ω)) + ||ūτ ||L2(0,T ;L2(Ω)))||w||L2(0,T ;L2(Ω)).

By (H5),

N∑
i=1

∫ iτ

(i−1)τ

||f(x, t, ūτ (x, t))− f(x, iτ, ūτ (x, t))||p
′

−1,p′dt

≤ C̃p
′

Mτ

N∑
i=1

∫ iτ

(i−1)τ

[ sup
||v||1,p≤1

|
∫

Ω

|v(x)|dx]1/p
′
dt

≤ C̃p
′

Mτ

N∑
i=1

∫ iτ

(i−1)τ

λp
′

4 dt = C̃p
′

Mτλ
p′

4 T.

Hence

||f̄τ (x, t, ūτ )− f(x, t, u)||p
′

Lp′ (0,T ;W−1,p′ (Ω))

≤ 2p
′
(λ1

p′CMτ(||u||L2(0,T ;L2(Ω)) + ||ūτ ||L2(0,T ;L2(Ω)))||w||L2(0,T ;L2(Ω))

+C̃p
′

Mτλ
p′

4 T ). (20)

And by Corollary 3.3 and (19),

−(k ∗τ diva(u,∇u))τ is bounded in Lp
′
(0, T ;W−1,p′(Ω)). (21)

Since v′τ = diva(ūτ ,∇ūτ ) + (k ∗τ diva(u,∇u))τ − f̄τ in (16), by (19)–(21), we
conclude that

v′τ is bounded in Lp
′
(0, T ;W−1,p′(Ω)). (22)
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4.2. Limits
As we mentioned in (17),(18),(20) and (22), and thanks to well-known com-
pactness results (see [[16], Corollary 4]) we have u, v and f such that

ūτ → u weakly in Lp(0, T ;W 1,p
0 (Ω)), (23)

vτ → v weakly star in W 1,p′(0, T ;W−1,p′(Ω)) (24)

vτ → v strongly in C(0, T ;L2(Ω)),

v̄τ → v weakly star in Lp
′
(0, T ;W−1,p(Ω)) (25)

v̄τ → v strongly in L∞(0, T ;L2(Ω)),

f̄τ → f strongly in Lp
′
(0, T ;W−1,p′(Ω)). (26)

We note that the above sequences with τ are for some not relabeled subse-
quence. Also we note that

lim
τ→0

∫ T

0

〈φ, v̄τ − vτ 〉dt ≤ lim
τ→0

τ

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

φ(x, t)(
vi − vi−1

τ
)dxdt

= lim
τ→0

τ

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

φ(x, t)v′τ (t)dxdt

= lim
τ→0

τ

∫ T

0

〈φ, v′τ 〉dt = 0,

for all φ ∈ Lp(0, T ;W 1,p
0 (Ω)) by (22). Hence, vτ and v̄τ have the same limit v

in (24) and (25). In addition, by (23), (25) and (H1), we have v = β(u).

Proof of Theorem 2.3. It is enough to prove that Proof of Theorem 2.3. By (5)

and (16), δv̄τ − diva(ūτ ,∇ūτ ) = −f̄τ + (ρ ∗τ f)τ + (ρ ∗τ δv)τ and then

lim supτ→0

∫ T

0

〈−diva(ūτ ,∇ūτ ), ūτ 〉dt

≤ lim supτ→0

∫ T

0

〈−δv̄τ , ūτ 〉dt+ lim supτ→0

∫ T

0

〈−fτ + (ρ ∗τ f)τ , ūτ 〉dt

+lim supτ→0

∫ T

0

〈(ρ ∗τ δv)τ , ūτ 〉dt. (27)

In the equation (27),

lim supτ→0

∫ T

0

〈−δv̄τ , ūτ 〉dt

= lim supτ→0

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

− β(ui)− β(ui−1)

τ
uidxdt.
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Since
∫

Ω
ψ∗(β(ui))− ψ∗(β(ui−1))dx ≤

∫
Ω

(β(ui)− β(ui−1))uidx,

lim supτ→0

∫ T

0

〈−δv̄τ , ūτ 〉dt

≤ lim supτ→0

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

−ψ∗(β(ui)) + ψ∗(β(ui−1))

τ
dxdt.

Since ψ∗(β(u(iτ))) − ψ∗(β(u((i − 1)τ))) = ∂ψ∗

∂s (β(u(σ)))(iτ − (i − 1)τ), σ ∈
((i− 1)τ, iτ ],

lim supτ→0

∫ T

0

〈−δv̄τ , ūτ 〉dt

≤ lim supτ→0

N∑
i=1

∫ iτ

(i−1)τ

1

τ

∫
Ω

− τ ∂ψ
∗(β(u(s)))

∂s
dxdt

=

∫ T

0

∫
Ω

− ∂ψ∗(β(u(s)))

∂s
dxdt.

Since ψ(t) =
∫ t

0
β(s)ds, ψ′(t) = β(t) and (ψ∗)′ = (ψ′)−1,

lim supτ→0

∫ T

0

〈−δv̄τ , ūτ 〉dt ≤
∫ T

0

∫
Ω

− ∂β(u(s))

∂s
u(s)dxdt

=

∫ T

0

〈−∂β(u)

∂t
, u〉dt. (28)

As for the terms containing ρ ∗τ δvτ in (27), we exploit Proposition 3.2 and
obtain

ρ ∗τ δvτ −→ ρ̄τ ∗ v′τ strongly in Lp
′
(0, T ;W−1,p′(Ω)).

On the other hand, by recalling that ρτ (0) = k(0) one readily computes that

ρ̄τ ∗ v′τ = ρτ ∗ v′τ + (ρ̄τ − ρτ ) ∗ v′τ
= ρ′τ ∗ vτ + k(0)vτ − ρτv0 + (ρ̄τ − ρτ ) ∗ v′τ
= ρτ ∗ v′ + k(0)(vτ − v) + ρ′τ ∗ (vτ − v) + (ρ̄τ − ρτ ) ∗ v′τ .

By recalling Proposition 3.4 and (24), it is standard matter to check that

the above right-hand side converges strongly to ρ ∗ v′ in Lp
′
(0, T ;W−1,p′(Ω)).

Therefore, we readily conclude that

ρ ∗τ δvτ −→ ρ ∗ v′ strongly in Lp
′
(0, T ;W−1,p′(Ω)). (29)

By Corollary 3.3 and Proposition 3.4, we check that

−f̄τ + (ρ ∗τ f)τ −→ −f + ρ ∗ f strongly in Lp
′
(0, T ;W−1,p′(Ω)). (30)

Applying (28),(29),(30) to (27) and by Lemma 2.1 (Minty’s Theorem), there
exist a solution u ∈ Lp(0, T ;W 1,p(Ω)) of (1) and initial condition is satisfied.

�
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