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HYPERBOLIC EQUATIONS RELATED TO p-LAPLACIAN

OPERATORS VIA TIME DISCRETIZATION METHODS

Kiyeon Shin and Sujin Kang

Abstract. In this paper we consider hyperbolic equations related to the

p-Laplacian with a nonsmooth kernel. By exploiting a suitable implicit

time-discretization technique we obtain the existence of global strong so-
lution.

1. Introduction

A variety of phenomena arising in elasticity theory, molecular dynamics, me-
chanics and quantum mechanics leads to nonlinear partial differential equations
of second order in time. Thus, in this paper, we study a hyperbolic differential
equation related to the p-Laplacian operator. More precisely, we are interested
in the existence and uniqueness of the solution of problem

utt + β(ut)−∆pu 3 f(t) in Ω× [0, T ],
u = 0 on ∂Ω× [0, T ],
u(·, 0) = u0, u′(·, 0) = v0 in Ω,

(1)

where −∆pu = −div(|∇u|p−2∇u), β is linear growth condition and f ∈ L∞(Ω).
T > 0 denotes some reference final time and Ω is a regular open bounded set
of Rd (d ≥ 1) with its boundary ∂Ω.

The functional analytic formulation of (1) leads to the initial value problem
u′′ + Au′ + Bu = f , u(0) = u0, u′(0) = v0. For the case that A is maximal
monotone and B is linear, the existence and uniqueness of the solution has been
established by Lions and Strauss [6] by using a Faedo-Galerkin method. An-
other proof has been given by Brézis [4] in the theory of nonlinear semigroups.
In this paper, we prove the the existence and uniqueness of the solution in case
that A is linear and B is nonlinear by time-discretization method. It should be
remarked that such a result applies to various significant cases of hyperbolic
partial differential equations in refer to [6], [7].
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The object of our work is not only to establish existence and uniqueness prop-
erties for the solution of (1), but also to introduce a discrete approximation of
the problem, then prove convergence of the discrete solution to the continuous
one. Thus we recall our assumptions and state main results in Section 2. In
Section 3, we show the existence of discrete scheme. After showing some esti-
mates on the approximations, the passage to the limit and the existence results
are given in Section 4.

2. Assumptions and Main results

We let || · ||p,|| · ||1,p and || · ||−1,p denote the norm in Lp(Ω), W 1,p
0 (Ω) and

W−1,p(Ω) for 1 < p < ∞, respectively ([1]). And < ·, · > denotes the duality

between W 1,p
0 (Ω) and W−1,p(Ω) or denotes inner product of L2(Ω). For 1 <

p < ∞, we define the conjugate p′ of p by 1/p + 1/p′ = 1. In this paper, Ci
and C will denote positive constants and λi the imbedding constants of [1].

Now, we present our assumptions which are used throughout this paper.
We suppose d∗ ≤ p <∞ where d∗ = (2d)/(d+ 2), u0 ∈ L∞(Ω) with u0 = 0 on
∂Ω, v0 ∈ L∞(Ω) with v0 = 0 on ∂Ω and the following:

(H) The function β : R → R is linear with (β(u))u ≥ 0 and |β(u)| ≤ Cu
where C is a positive constant.

Definition 1. ([2]) Let X be a reflexive Banach space and A : X → X ′.
We say that A is monotone if 〈Ay − Az, y − z〉 ≥ 0 for all y, z ∈ X, and
A is hemicontinuous if for each y, z, w ∈ X the real-valued function t →
〈A(y + tz), w〉 is continuous.

Lemma 2.1. (Minty’s Theorem [9]) Let X be a reflexive Banach space. If
A : X → X ′ is monotone and hemicontinuous, then

Ay = f if and only if 〈f −Az, y − z〉 ≥ 0

for all z ∈ X.

Lemma 2.2. ([3]) Let Ω be a bounded set in Rd. Let 1 < p <∞ be fixed and

A : W 1,p
0 (Ω)→W 1,p′(Ω) a nonlinear operator defined by

A(u) = −div a(x, u,Du)

where a(x, s, ξ) is a Carathéodory function a : Ω× R× Rd → Rd such that

|a(x, s, ξ)| ≤ β[|s|p−1 + |ξ|p−1 + k(x)],

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0, ξ 6= η,

a(x, s, ξ)ξ ≥ α|ξ|p,

where k(x) ∈ Lp′(Ω), k ≥ 0, β > 0 and α > 0.
Let g(x, s, ξ) be a Carathéodory function such that

g(x, s, ξ)s ≥ 0,

|g(x, s, ξ)| ≤ b(|s|)(|ξ|p + c(x)),
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where b is a continuous and increasing function with (finite) values on R+ and

c ∈ L1(Ω), c ≥ 0. Then, for h ∈W−1,p′(Ω), the problem

Au+ g(x, u,∇u) = h,

has at least one solution u ∈W 1,p
0 (Ω).

Lemma 2.3. ([8]) If u ∈W 1,p
0 (Ω) is a solution to the equation

−∆pu+ F (x, u) = h,

where h ∈ W−1,r, r > d
p−1 and F satisfies ξF (x, ξ) ≥ 0 in Ω × R, then

u ∈ L∞(Ω).

Now, we state our main results as follows :

Theorem 2.4. Under the assumptions (H), there exists a unique solution u of

(1) such that u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)).

3. Existence of scheme

For the problem (1), we consider the discrete scheme (DS) for i = 1, 2, . . . , N ,

(DS)


vi−vi−1

τ + β(ui−ui−1

τ )−∆pui = fi in Ω,
ui−ui−1

τ = vi
ui = 0, vi = 0 in ∂Ω,
u0 = u0, v0 = v0 in Ω.

where Nτ = T and T is a fixed positive real. We shall show that (DS) has a
solution ui for i = 1, 2, . . . , N .

Theorem 3.1. Let (H) hold. Then for i = 1, 2, . . . , N , there exists a unique

solution ui ∈W 1,p
0 (Ω) ∩ L∞(Ω) of (DS) for sufficiently small τ .

Proof. First of all, we rewrite (DS) as

−τ2∆pui + F (x, ui) = ϕi−1,

where F (x, ui) = (1 + τβ)(ui) and ϕi−1 = ui−1 − τvi−1 + τβ(ui−1) + τ2fi.
Now, we consider the equation

−τ2∆pu+ F (x, u) = ϕ1 = u0 − τv0 + τβ(u0) + τ2f1, (2)

where F (x, u) = (1+τβ)(u) for fixed τ = T/N . It is obvious that a(x, u,Du) :=
|∇u|p−2∇u satisfies all the three conditions of a in Lemma 2.3 (cf [3]). And, by

assumption, Lemma 2.3 and Lemma 2.4, there exists a solution u ∈W 1,p
0 (Ω)∩

L∞(Ω). We put u1 := u and we obtain v1 by scheme. Then we consider the
equation −τ∆pu+ F (x, u) = ϕ2 = u1 − τv1 + τβ(u1) + τ2f2 where F (x, u) =
(1 + τβ)(u). Continuing this process, we have a solution ui of (DS) for i =

1, 2, . . . , N such that ui ∈W 1,p
0 (Ω) ∩ L∞(Ω) (i = 1, 2, . . . , N).
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Next, we show the uniqueness of ui (i = 1, 2, . . . , N). Let ui and u∗i be two
solutions of (DS) for i = 1, 2, . . . , N . Using the result which we will establish
below (see Theorem 3.2), we have

||ui||1,p + ||u∗i ||1,p ≤M

where M is a suitable positive constant independent of τ . And, from [5] we
have

〈−∆pu+ ∆pv, u− v〉 ≥ Cp||u− v||p1,p (3)

for all u, v ∈W 1,p
0 (Ω).

Since ui and u∗i are solutions of (DS), we have

−τ2∆pui + τ2∆pu
∗
i + (I + τβ)(ui − u∗i ) = 0. (4)

Multiplying (4) by ui − u∗i and integrating over Ω, we get

〈−τ2∆pui + τ2∆pu
∗
i , ui − u∗i 〉+

∫
Ω

((I + τβ)(ui − u∗i ))(ui − u∗i )dx = 0. (5)

By (3) and (H), the equation (5) becomes

(τ2Cp − τCp)‖ui − u∗i ‖
p
1,p ≤ −

1

2

∫
Ω

|ui − u∗i |2dx.

Thus, it implies that for sufficiently small τ , i.e., τ < 1
Cp

, ui = u∗i holds. �

Now, we consider the bounds of {ui} (i = 1, 2, . . . , N), which is constructed in
Theorem 3.1 as solutions of (DS).

Theorem 3.2. We assume (H). Then there exist C1–C3, which are positive
constants and independent of τ , such that for all i = 1, 2, . . . ,m,

(a) ||vi||∞ ≤ C1,

(b) τ

m∑
i=1

||ui||p1,p ≤ C2,

(c) ||vm||22 +

m∑
i=1

||vi − vi−1||22 ≤ C3,

where m = 1, 2, . . . , N .

Proof. (a) Multiplying (DS) by |vi|kvi and integrating over Ω, we have by (H),
f ∈ L∞(Ω) and Hölder’s inequality,∫

Ω

|vi|kvividx ≤ ||vi||k+1
k+2||vi−1||k+2 +m(Ω)

1/(k+2)
τC4||vi||k+1

k+2.

Then ||vi||k+2 ≤ m(Ω)
1/k+2

τC4 + ||vi−1||k+2. By induction, we have ||vi||k+2 ≤
m(Ω)

1/(k+2)
C4T + ||v0||k+2. Letting k →∞, ||vi||∞ ≤ C(C4, T, u0) =: C1.
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(b) Let z ∈ W 1,p
0 (Ω) be fixed. Multiplying the equation (DS) by ui − z and

integrating over Ω, we have

〈vi − vi−1, ui〉+ τ ||ui||p1,p (6)

= 〈vi − vi−1, z〉 − τ〈∆pui, z〉 − τ〈β(vi), ui − z〉+ 〈fi, ui − z〉.

Now, we apply Young’s inequality to (6) to get

〈vi − vi−1, ui〉+
τ

4
||ui||p1,p

≤ 〈vi − vi−1, z〉+ τ{(1

4

p

p− 1
)−(p−1)p−1 + CC1λ+ Cfλ}||z||p1,p

+τ(
1

4

p

λ1
)
− p

p′ (p′)−1Cp
′

f m(Ω) + τ(C1C)p
′
m(Ω) + (

p

4λ1
)
− p

p′ (p′)

Now we define ϕ(v) = 〈v, v〉/2 and ϕ∗(v) = sup
z
{〈v, z〉 − ϕ(z)}, then we have

ϕ∗(vi)− ϕ∗(vi−1) +
τ

4
||ui||p1,p (7)

≤ 〈vi − vi−1, z〉+ τC(||z||1,p, p, λ, λ1,m(Ω), C, Cf , C1) + τ2
i∑

j=1

τ ||uj ||p1,p

for i = 1, 2, . . . ,m and for arbitrary m = 1, 2, . . . , N . By summing (7) for
i = 1, 2, . . . ,m,

ϕ∗(vm)− 〈vm, z〉+
τ

4

m∑
i=1

||ui||p1,p (8)

≤ ϕ∗(v0)− 〈v0, z〉+ C5 + τ

m∑
i=1

i∑
j=1

τ ||uj ||p1,p,

where C5 := C(||z||1,p, p, λ, λ1,m(Ω), C, Cf , C1) for m = 1, 2, . . . , N . Applying
the discrete Gronwall’s lemma to (8),

ϕ∗(vm)− 〈vm, z〉+
τ

4

m∑
i=1

||ui||p1,p ≤ C(v0, ||z||1,p, p, λ, λ1,m(Ω), C, Cf , C1).

Hence τ

m∑
i=1

||ui||p1,p ≤ C3.

(c) Multiplying (DS) by vi and integrating over Ω, we get by (H) and using
a(a− b) = 1

2a
2 − 1

2b
2 + 1

2 (a− b)2,

||vi||22 − ||vi−1||22 + ||vi − vi−1||22 ≤ τ(1 + Cf )C1.

Summing the above inequality for i = 1, 2, . . . ,m, we have

||vm||22 +

m∑
i=1

||vi − vi−1||22 ≤ T (1 + Cf )C1 + ||v0||22,
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for m = 1, 2, . . . , N . Thus, ||vm||22 +

m∑
i=1

||vi − vi−1||22 ≤ C3. �

In the forthcoming discussion, the following notations will be used exten-
sively. For vectors ui (i = 0, 1, . . . , N) in Theorem 3.1, we define two functions
uτ and ūτ on [0, T ] by

uτ (0) := u0, uτ (t) := ui +
ui − ui−1

τ
(t− iτ),

ūτ (0) := u0, ūτ (t) := ui,

for t ∈ ((i− 1)τ, iτ ] (i = 1, 2, . . . , N) and τ = T/N . Similarly, we define

vτ (0) := v0, vτ (t) := vi +
vi − vi−1

τ
(t− iτ),

v̄τ (0) := v0, v̄τ (t) := vi,

for i = 0, 1, . . . , N . Also, we let f̄τ (t) := fi for t ∈ ((i−1)τ, iτ ] (i = 1, 2, . . . , N).
Hence we can rewrite (DS) in a more compact form as

v′τ + β(u′τ )−∆pūτ + f̄τ = 0, a.e. in [0, T ]. (9)

4. Estimates and Limits

4.1. Estimates

First of all, by the consequence of Theorem 3.2, the followings are very easily
proven.

ūτ is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)), (10)

u′τ is bounded in Lp(0, T ;W 1,p
0 (Ω)), (11)

v̄τ is bounded in L∞(0, T ;L∞(Ω)), (12)

v′τ is bounded in L2(0, T ;L∞(Ω)). (13)

Moreover, by (10) and boundedness of p-Laplacian operator,

−∆pūτ is bounded in Lp
′
(0, T ;W−1,p′(Ω)). (14)

And by (9), (11), (13) and f ∈ L∞(Ω),

v′τ is bounded in Lp
′
(0, T ;W−1,p′(Ω)). (15)

We emphasis that all of the above boundedness are independent of τ .
First of all, we have u ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) which is a
weak limit of ūτ as τ → 0 by (10). i.e., ūτ converges weakly to u as τ → 0 in

Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)).



p-LAPLACIAN HYPERBOLIC EQUATIONS 615

4.2. Limits and Proof of Theorem 2.4

As we mentioned in (10)-(15), we have u, v and f such that

ūτ → u weakly in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)), (16)

vτ → v weakly star in W 1,p′(0, T ;W−1,p′(Ω)), (17)

vτ → v weakly in C(0, T ;L2(Ω)),

v̄τ → v weakly star in Lp
′
(0, T ;W−1,p′(Ω)), (18)

v̄τ → v strongly in L2(0, T ;L2(Ω)),

f̄τ → f strongly in Lp
′
(0, T ;W−1,p′

0 (Ω)). (19)

We note that the above sequences with τ are for some not relabeled subse-
quence. Also we note that

lim
τ→0

∫ T

0

〈φ, v̄τ − vτ 〉dt ≤ lim
τ→0

τ

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

φ(x, t)(
vi − vi−1

τ
)dxdt

= lim
τ→0

τ

N∑
i=1

∫ iτ

(i−1)τ

∫
Ω

φ(x, t)v′τ (t)dxdt

= lim
τ→0

τ

∫ T

0

〈φ, v′τ 〉dt = 0,

for all φ ∈ Lp(0, T ;W 1,p
0 (Ω)) by (15). Hence, vτ and v̄τ have the same limit v

in (17) and (18).
Therefore,

−∆pūτ → −utt − β(ut)− f weakly in Lp
′
(0, T ;W−1,p′

0 (Ω)). (20)

And

lim sup
τ→0

∫ T

0

〈−∆pūτ , ūτ 〉dt ≤ lim sup
τ→0

∫ T

0

∫
Ω

− v′τ ūτdxdt

+ lim sup
τ→0

∫ T

0

∫
Ω

− β(u′τ )ūτdxdt+ lim sup
τ→0

∫ T

0

∫
Ω

− f̄τ ūτdxdt.

Therefore, by Lemma 2.1 (Minty’s Theorem), (14) and (16)–(20), there exist a

unique solution u of (1) such that u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L∞(Ω)) if

p ≥ 2.
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[4] Brézis, H., Semi-groups non linéaires et applications, Sympos. Math. 7, Academic Press,
London, 1971.



616 K. SHIN AND S. KANG

[5] Le, V., Schmit, K., Global Bifurcation in Variational Inequalities, Springer-Verlag, New
York, 1997.
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