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LARGE TIME-STEPPING METHOD BASED ON THE FINITE

ELEMENT DISCRETIZATION FOR THE CAHN-HILLIARD

EQUATION†
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Abstract. In this paper, a class of large time-stepping method based on
the finite element discretization for the Cahn-Hilliard equation with the
Neumann boundary conditions is developed. The equation is discretized
by finite element method in space and semi-implicit schemes in time. For
the first order fully discrete scheme, convergence property is investigated
by using finite element analysis. Numerical experiment is presented, which
demonstrates the effectiveness of the large time-stepping approaches.
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1. Introduction

In this work, we use a class of large time-stepping methods to solve numeri-
cally the Cahn-Hilliard equation with Neumann boundary conditions. We con-
sider the fourth-order nonlinear evolutionary equation: for real u,




ut +∆(ν∆u− Φ(u)) = 0, x ∈ Ω, 0 < t ≤ T,

∂u

∂n
=

∂ (ν∆u− Φ(u))

∂n
= 0, x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where ut =
∂u

∂t
, n is the outward normal, Φ(u) is usually of the form Φ(u) =

u3 − u and Ω is a bounded domain.
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The Cahn-Hilliard equation was originally introduced by Cahn and Hilliard
[2] to describe the complicated phase separation and coarsening phenomena. It
has been widely accepted as a good model to describe the phase separation and
coarsening phenomena in a melted alloy. For the background, derivation and
discussion of the Cahn-Hilliard equation, we refer to [1, 3, 6, 12, 11, 16, 17] and
the references therein. There has been a large body of work dealing with the
numerical approximation of the Cahn-Hilliard equation. Zhang [23] obtained
optimal order error estimates in L∞ and H1,∞ norms and the superconvergence
property in derivative approximation. In [7, 8] Elliot et al. investigated the non-
conforming finite element method for multidimensional problem and obtained
in [9] optimal order error bounds by applying a second order splitting method.
A multigrid finite element solver has been developed by Kay and Welford in
[15]. In [18] Xia et al. studied the local discontinuous Galerkin methods. Ye et
al. developed the Fourier collocation method and the Fourier spectral method
for Cahn-Hilliard equation with periodic boundary conditions, respectively (see
[20], [22]); Ye also presented the Legendre collocation method (see [21]). In [19],
Xu and Tang analysized the large time-stepping methods for epitaxial growth
models. Feng and Prohl in [10] proposed and analysized a semi-discrete and
a fully-discrete finite element method for a class of Cahn-Hilliard equation in-
volving a small parameter. They proved that the stability constant increases to
infinity algebraically instead of exponentially (if one uses the Gronwall inequal-
ity) as the small parameter goes to zero.

Our main task in this work is to investigate the time-stepping methods for
the problem (1). The classical first order semi-implicit scheme reads:

un − un−1

∆t
+ ν∆2un = ∆Φ(un−1), n ≥ 1, (2)

where ∆t is the time-step and tn = n∆t, un is an approximation to u(x, tn). In
practice, it is known that the semi-implicit scheme in time allows a consistently
larger time-step size. To improve the stability of the semi-implicit method (2),
the term O(∆tut) is added to the scheme (2):

un − un−1

∆t
+ ν∆2un = A∆(un − un−1) + ∆Φ(un−1), n ≥ 1, (3)

where A is a positive constant. A second order backward difference (BDF) for
ut and a second order Adams-Bashforth (AB) for the explicit treatment of the
nonlinear term for (1) is the following second-order BDF/AB scheme:

3un − 4un−1 + un−2

2∆t
+ ν∆2un = ∆(2Φ(un−1)− Φ(un−2)), n ≥ 2. (4)

Similarly, to improve stability, an O(∆t2utt) term is added in the scheme (4),
from which we get the following second-order time discretization scheme:

3un − 4un−1 + un−2

2∆t
+ ν∆2un = A∆δttu

n−1 +∆(2Φ(un−1)− Φ(un−2)), n ≥ 2, (5)

where δttu
n−1 = un − 2un−1 + un−2.
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In [13], these methods together with the Fourier discretization in space were
applied to solve the Cahn-Hilliard equation with periodic boundary condition.
Our main contribution is to use these methods combined with finite element dis-
cretization to solve Cahn-Hilliard equation with Neumann boundary conditions
and hopefully to get the similar results.

The remainder of the paper is organized as follows. In section 2, we give semi-
discrete form for the Cahn-Hilliard equation; stability and convergence property
of the first-order method is investigated in section 3; numerical results are pre-
sented in section 4.

2. Semi-discrete scheme with finite element method

Let L2(Ω) denote the set of all square integrable functions with the inner

product (u, v) =

∫

Ω

u(x)v(x)dx and the norm ‖u‖2 = (u, u). Let L∞(Ω) denote

the Lebesgue space with the norm ‖u‖∞ = ess sup
x∈Ω

|u(x)| and Hm(Ω) denote the

usual Sobolev space with the norm ‖u‖m = (
∑

|α|≤m

‖Dαu‖2) 1
2 . Denote

L2(0, T ;Hm(Ω)) =

{
u(x, t) ∈ Hm(Ω);

∫ T

0

‖u‖2m < ∞
}
,

namely u(x, t) ∈ Hm(Ω) for all 0 ≤ t ≤ T.
Let τh be a subdivision of domain Ω, N is the dimension of the approximation

space, hi is the mesh size, h = max
1≤i≤N

hi. Let S
3
h denote the finite element space

consisting of piecewise third-order polynomials, and

S3h ⊂ H2
E(Ω) = {u ∈ H2(Ω) :

∂u

∂n
= 0 on ∂Ω}. (6)

τh is assumed to be regular in the usual sense [4, 5]. Then the following
inverse inequality holds

‖∇vh‖ ≤ ch−1‖vh‖, ∀vh ∈ S3h,

where c > 0 is independent of h.
Denote PN : L2(Ω) → H2

E(Ω) the L2(Ω)−projector onto H2
E(Ω), which is

defined by

(PNu− u, v) = 0, ∀ v ∈ H2
E(Ω).

The variational form of (1) is to seek u(t, x) : (0, T ]×Ω → H2
E(Ω), u(0, x) = u0(x)

such that

(ut, v) + ν(∆u,∆v) = (Φ(u),∆v), ∀v ∈ H2
E(Ω). (7)

Similarly, we define the semi-discrete approximation of problem (1): find uh(t) :
(0, T ] → S3h such that
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{
(∂tuh, vh) + ν(∆uh,∆vh) = (Φ(uh),∆vh), ∀vh ∈ S3h,

uh(0) ∈ S3h,
(8)

for all t > 0 with uh(0) = PNu0. Further, we define the energy functional of the
solution u

E(u) =
ν

2
‖∇u‖2 + 1

4
‖u2 − 1‖2. (9)

The following lemma of Gronwall type will be used in the later section (see,
for instance, [14] for a proof).

Lemma 2.1 (Discrete Gronwall Lemma). Let C0, ∆t be nonnegative numbers
and ak, bk, ck, dk be nonnegative sequences satisfying

an +∆t

n∑

k=0

bk ≤ ∆t

n−1∑

k=0

dkak +∆t

n−1∑

k=0

ck + C0, ∀ n ≥ 1

then

an +∆t

n∑

k=0

bk ≤ exp

(
∆t

n−1∑

k=0

dk

)(
∆t

n−1∑

k=0

ck + C0

)
, ∀ n ≥ 1.

3. Stability and error analysis for semi-implicit scheme

Discretize the time interval [0, T ] : 0 = t0 < t1 < · · · < tM = T, tn − tn−1 =
∆t = T/M,M > 0 is an integer. Introduce the Euler backward formula

ut(tn) =
u(tn)− u(tn−1)

∆t
+

1

∆t

∫ tn

tn−1

(τ − tn−1)utt(τ)dτ = δtu
n + εn, (10)

here, if u(t) is continuous, then un = u(tn).
Next we define the fully discrete scheme to approximate problem (7) by the

first-order scheme (3). Find Un ∈ S3
h(n = 1, 2, · · · ,M) satisfying

(δtU
n, vh) + ν(∆Un,∆vh) = (Φ(Un−1),∆vh) +A((Un − Un−1),∆vh), (11)

when Un−1 is known and ∆t is sufficiently small, we can get Un by solving a
definite linear equation system which is equivalent to equation (11). Similarly,
the second-order fully discrete formula by (5) is

(
3Un − 4Un−1 + Un−2

2∆t
, vh

)
+ ν(∆Un,∆vh)

= (AδttU
n−1,∆vh) + (2Φ(Un−1)− Φ(Un−2),∆vh). (12)
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3.1. Stability analysis for the first order semi-implicit scheme.

Theorem 1. If A in (11) satisfies

A ≥ max
x∈Ω

{
1

2
|Un−1(x)|2 + 1

4
|Un(x) + Un−1(x)|2

}
− 1

2
,∀n ≥ 1, (13)

then for all m ≥ 0 there holds

E(Um) + ∆t

m∑
n=1

‖∇(A(Un − Un−1) + (|Un−1|2 − 1)Un−1 − ν∆Un)‖2 ≤ E(U0) (14)

where E(u) is defined by (9).

Proof. Taking v = (A(Un−Un−1)+ (|Un−1|2− 1)Un−1− ν∆Un)∆t in (11) and
using the equalities

2a(a− b) = a2 − b2 + (a− b)2, 2ab = a2 + b2 − (a− b)2,

we obtain

0 = ‖∇(A(Un − Un−1) + (|Un−1|2 − 1)Un−1 − ν∆Un)‖2∆t

+
ν

2
(‖∇Un‖2 − ‖∇Un−1‖2 + ‖∇(Un − Un−1)‖2) +A‖Un − Un−1‖2 + In,

(15)

where

In =
(
(|Un−1|2 − 1)Un−1, Un − Un−1

)

=
1

2

(
(|Un−1|2 − 1), |Un|2 − |Un−1| − |Un − Un−1|2)

=
1

2

(
1− |Un−1|2, |Un − Un−1|2)− 1

2
‖Un‖2 + 1

2
‖Un−1‖2

− 1

4
‖|Un|2 − |Un−1|2‖2 + 1

4
‖Un‖4L4 − 1

4
‖Un−1‖4L4

=
1

2
(1− |Un−1|2 − 1

2
|Un + Un−1|2, |Un − Un−1|2)

+
1

4
‖|Un|2 − 1‖2 − 1

4
‖|Un−1|2 − 1‖2.

(16)

Combining (15) and (16) yields

0 ≥ ‖∇(A(Un − Un−1) + (|Un−1|2 − 1)Un−1 − ν∆Un)‖2∆t+ E(Un)

− E(Un−1) +

(
A+

1

2
− 1

2
|Un−1|2 − 1

4
|Un + Un−1|2, |Un − Un−1|2

)
,

(17)

which gives the desired result (14) provided the assumption (13) is satisfied. ¤

Note that the condition (13) for A is not a satisfactory one from the pointview
that the right-hand side of (13) is also dependent of A. Nevertheless, it will not
bring us critical difficulty when choosing proper A for computation. In fact, we
can roughly take as

A ≥ 3

2
|Un−1|2 − 1

2
, a.e. in Ω.
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On the other hand, from numerical experiments we find out that for some larger
values of A, scheme (11) leads to divergent solutions.

3.2. Error analysis for fully discrete finite element approximation. In
this section, we present the fully discrete scheme and derive error estimates for
the first-order scheme. In order to carry out error analysis, we first introduce
a projector for a steady state problem. Set a(u, v) = ν(∆u,∆v) + (u, v) and
assume u ∈ H2

E(Ω) and define biharmonic projector Rh of u satisfying

a(u−Rhu, vh) = 0, ∀vh ∈ S3h, (18)

following

‖∇u‖2 = |(∇u,∇u)| = |(u,∆u)| ≤ ‖u‖‖∆u‖ ≤ 1

2
‖u‖2 + 1

2
‖∆u‖2, ∀u ∈ H2

E(Ω),

we get

ν?‖u‖22 ≤ a(u, u), ∀u ∈ H2
E(Ω), ν

? =
1

2
min(ν, 1).

Therefore, a(u, v) is a symmetric positive-define bilinear form on S3h. Further-
more, we can see that the solution to problem (18) is existent and unique. Using
the standard finite element analysis for biharmonic equation, we get

‖u−Rhu‖+ h‖u−Rhu‖1 + h2‖u−Rhu‖2 ≤ Chr+1‖u‖r+1, 2 ≤ r ≤ 3. (19)

Denote

ηn = un −Rhu
n, θn = Rhu

n − Un,

then

un − Un = ηn + θn, θn ∈ S3h.

Combining equations (7) and (18), we get

(ut, vh)− (u−Rhu, vh) + ν(∆Rhu,∆vh) = (Φ(u),∆vh). (20)

Substracting (11) from (20) at t = tn, we obtain

(ut(tn)− δtU
n, vh)− (ηn, vh) + ν(∆θn,∆vh)

= (Φ(un)− Φ(Un−1)−A(Un − Un−1),∆vh).
(21)

Combining the following equality with (21)

ut(tn)− δtU
n = ut(tn)− δtu

n + δtu
n − δtRhu

n + δtRhu
n − δtU

n

= εn + δtη
n + δtθ

n,

we have

(δtθ
n, vh) + ν(∆θn,∆vh)

= (ηn − εn − δtη
n, vh) + (Φ(un)− Φ(Un−1)−A(Un − Un−1),∆vh).

(22)



Large time-stepping method based on FE discretization for the Cahn-Hilliard equation 1135

Theorem 2. Denote u(t) and Un solutions to problems (7) and (11) respec-
tively, if u(0) ∈ H4(Ω), ut ∈ L2(0, T ;H4(Ω)), utt ∈ L2(0, T ;L2(Ω)), U0 satisfy-
ing ‖u(0) − U0‖ ≤ Ch4‖u(0)‖4, mesh ratio satisfying ∆t/h2 ≤ c, then if h is
small enough, there exists C = C(u) independent of h,∆t, n, satisfying

‖u(tn)− Un‖ ≤ C(∆t+ h4), n = 0, 1, · · · ,M. (23)

Proof. First, we make a posteriori assumption whose correctness will be verified
later: if 0 < h ≤ h0, there exists h0 satisfying

‖u(tm)− Um‖0,∞ ≤ 1, m = 1, 2, · · · ,M. (24)

Setting vh = θn in (22), using the Cauchy inequality and the Young inequality,
we get

(δtθ
n, θn) + ν‖∆θn‖2 ≤ ‖ηn − εn − δtη

n‖‖θn‖+ ‖θn + ηn‖‖∆θn‖
+

(‖(un)3 − (Un−1)3‖+ (1 +A)‖Un − Un−1‖) ‖∆θn‖

≤ 1

2
‖ηn − εn − δtη

n‖2 + 1

2
‖θn‖2 + 1

ν
(‖ηn‖2 + ‖θn‖2)

+
1

ν
(‖(un)3 − (Un−1)3‖2 + (1 +A)2‖Un − Un−1‖2) + ν‖∆θn‖2.

Applying the definition of δtθ
n and the Cauchy inequality, we obtain

‖θn‖2 ≤ ‖θn−1‖2 + 2∆t{1
2
‖ηn − εn − δtη

n‖2 + 1

2
‖θn‖2 + 1

ν
(‖ηn‖2 + ‖θn‖2)

+
1

ν
(‖(un)3 − (Un−1)3‖2 + (1 +A)2‖Un − Un−1‖2)}.

(25)

Combining (19), (10) and (24), we have the following estimates:

‖ηn‖ = ‖un −Rhu
n‖ ≤ Ch4‖u(tn)‖4,

‖δtηn‖ = ‖ 1

∆t

∫ tn

tn−1

ηt(τ)dτ‖ ≤ Ch4

∆t

∫ tn

tn−1

‖ut(τ)‖4dτ ≤ Ch4

(∆t)
1
2

(∫ tn

tn−1

‖ut(τ)‖24dτ
) 1

2

,

‖εn‖ ≤
∫ tn

tn−1

‖utt(τ)‖dτ ≤ (∆t)
1
2

(∫ tn

tn−1

‖utt(τ)‖2dτ
) 1

2

,

‖Un − Un−1‖ =‖Un − un + un − un−1 + un−1 − Un−1‖
=‖θn + ηn + un − un−1 + θn−1 + ηn−1‖

≤C

{
(∆t)

1
2 (

∫ tn

tn−1

‖ut(τ)‖2dτ) 1
2 + h4‖u(tn)‖4 + ‖θn‖+ ‖θn−1‖

}
,

∥∥(un)3 − (Un−1)3
∥∥ = ‖ ((un)2 − (un−1)2

)
un +

(
(un−1)2 − (Un−1)2

)
un

+ (Un−1)2(un − Un−1)‖
≤ |un + un−1|∞|un|∞‖un − un−1‖
+ |un−1 + Un−1|∞|un|∞‖un−1 − Un−1‖
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+ |Un−1|2∞(

∫ tn

tn−1

‖ut(τ)‖dτ + ‖ηn−1‖+ ‖θn−1‖)

≤ C



(∆t)

1
2

(∫ tn

tn−1

‖ut(τ)‖2dτ
) 1

2

+ h4‖u(tn)‖4 + ‖θn−1‖


 ,

here we have used the following inequalities:

|un|∞ ≤ C‖u(tn)‖4 ≤ C(‖u(0)‖4 +
∫ tn

0

‖ut(τ)‖4dτ),

|Un−1|∞ ≤ |Un−1 − un−1|∞ + |un−1|∞ ≤ 1 + |un−1|∞.

Applying the above inequalities into (25), we get

‖θn‖2 − ‖θn−1‖2 ≤ C∆t(‖θn‖2 + ‖θn−1‖2 + h8‖u(tn)‖24)

+ C(h8 + (∆t)2)

(∫ tn

tn−1

(‖ut(τ)‖24 + ‖ut(τ)‖2 + ‖utt(τ)‖2)
)
.

Summing for n = 1 to M and noting that ‖θ0‖ ≤ Ch4‖u(0)‖4, n∆t = tn ≤ T,
we obtain

‖θn‖2 ≤ C∆t

n∑
i=1

‖θi‖2 + C
(
(∆t)2 + h8)

(
‖u(0)‖24 +

∫ tn

0

(‖ut(τ)‖24 + ‖utt(τ)‖2)dτ
)
.

When ∆t is small enough that C∆t ≤ 1/2, we have

‖θn‖2 ≤ C∆t

n−1∑

i=1

‖θi‖2 + C
(
(∆t)2 + h8

)
.

From the discrete Gronwall Lemma 2.1, we get

‖θn‖ ≤ C(∆t+ h4).

Therefore, combining (19) and the triangular inequality, we come to

‖un − Un‖ ≤ ‖θn‖+ ‖ηn‖ ≤ C(∆t+ h4).

To complete the proof, next we verify the correctness of the assumption (24) by
the method of induction. When m = 0, with initial approximation condition and
the inverse inequality, we obtain that when h ≤ h0, h0 is sufficiently small, then
(24) holds. Assume (24) holds for m = n−1, from the proof above, we have (23),
where C is independent of n,∆t, h (note that tn ≤ T ). In the case of m = n,
we introduce uI , the interpolation approximation of u. Applying the triangular
inequality, the inverse inequality, interpolation approximation properties, the
mesh ratio condition and (24), we come to the conclusion that when h ≤ h0, h0

is sufficiently small, then

‖un − Un‖0,∞ ≤‖un − un
I ‖∞ + ‖un

I − Un‖∞
≤‖un − un

I ‖1 + Ch−1‖un
I − Un‖

≤C(h3 + h) ≤ Ch0 ≤ 1,
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namely, (24) holds when m = n. According to the method of induction, the
correctness of assumption (24) is verified, and the proof of the theorem is thus
completed. ¤

4. Numerical experiments

We present an example for the Cahn-Hilliard equation using our schemes (11)
and (12).

We investigate the Cahn-Hilliard equation (1) in [0, 2π] with the initial con-
dition u0(x) = 0.5 cos(x), ν = 0.03 and T = 5. Since no exact solution to
(1) is known, we take numerical results of the second-order scheme (12) with
∆t = 0.0001 and N = 128 as the “exact” solution, which will be used in the
computation of the L2− error.

Figure 1 and Figure 2 give numerical solutions of schemes (11) and (12)
for ν = 0.03 with different values of A and ∆t respectively. Figure 1 with
(A,∆t)=(0,0.01), (0.5,0.1), (1,0.1) and Figure 2 with (A,∆t)=(0,0.001), (0.5,0.01),
(1,0.01). We can see that there is a good agreement between the numerical re-
sults obtained by using the standard semi-implicit time-stepping method (A=0)
with small ∆t and the modified methods (11) and (12) with larger ∆t.

In Figure 3, the patterns hardly change after t = 3. Figure 4 presents the
time dependency of energy functional (9) of numerical solutions of scheme (11).
We can see that the energy functional of numerical solutions decreases as time
passes. In [6], the similar results were given.

In Table 1, we list the values of ∆tc with different ν and different choices of
A, where ∆tc denotes the largest possible time which allows stable numerical
computation. In other words, the numerical solution will blow up if the time-
step is larger than ∆tc. It is observed that the time-steps can be increased a few
times by adding a non-zero A term in both first and second order semi-implicit
schemes.

Table 2 presents the L2−errors obtained by both schemes (11) and (12).
It is obvious that the numerical errors are almost the same for computations
with and without using the A terms, and larger time-steps can be applied by
adding an A term. Furthermore, we can see that the L2−error for scheme (11)
is of first-order and the L2−error for scheme (12) is of second-order which are
correspondent with our theoretical results.
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Figure 1. Numerical results obtained by using the first-order
method with ν = 0.03, N = 64
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Figure 2. Numerical results obtained by using the second-order
method with ν = 0.03, N = 64
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Table 1. ∆tmax with different ν and A

ν A ∆tc for scheme (11) ∆tc for scheme (12)
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A=0.5 ∆tc ≈ 1 ∆tc ≈ 0.4
A=1 ∆tc ≈ 1 ∆tc ≈ 0.8

ν=0.03 A=0 ∆tc ≈ 0.01 ∆tc ≈ 0.002
A=0.5 ∆tc ≈ 0.1 ∆tc ≈ 0.025
A=1 ∆tc ≈ 0.1 ∆tc ≈ 0.04

ν=0.003 A=0 ∆tc ≈ 0.002 ∆tc ≈ 0.0001
A=0.5 ∆tc ≈ 0.015 ∆tc ≈ 0.003
A=1 ∆tc ≈ 0.02 ∆tc ≈ 0.006

Table 2. Numerical errors of schemes (11) and (12) with ν =
0.03, N = 32.

∆t L2−error of scheme(11) L2−error of scheme (12)
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Figure 3. The evolution from t = 0 to 5, ∆t = 0.01, N = 64
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Figure 4. The energy from t = 0 to 5, ∆t = 0.01, N = 64
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