• Title/Summary/Keyword: Immunomodulation

Search Result 172, Processing Time 0.027 seconds

Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide

  • Yang, Shuo;Zhang, Jing;Jiang, Yang;Xu, Yuan Qing;Jin, Xiao;Yan, Su Mei;Shi, Bin Lin
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1169-1180
    • /
    • 2021
  • Objective: This research aimed to study the effects of Artemisia argyi flavonoids (AAF) supplemented in diets on the growth performance and immune function of broiler chickens challenged with lipopolysaccharide (LPS). Methods: A total of one hundred and ninety-two 1-d-old broiler chicks were assigned into 4 treatment groups, which were, respectively, fed a basal diet (control), fed a diet with 750 mg/kg AAF, fed a basal diet, and challenged with LPS, fed a diet with 750 mg/kg AAF, and challenged with LPS. Each treatment had six pens with 8 chicks per pen. On days 14, 16, 18, 20 (stress phase I) and 28, 30, 32, 34 (stress phase II), broilers were injected with LPS (500 ㎍/kg body weight) or an equivalent amount of saline. Results: The results demonstrated that dietary AAF significantly improved the body weight (d 21) and alleviated the decrease of average daily gain in broilers challenged with LPS on d 21 and d 35 (p<0.05). Dietary AAF increased bursa fabricius index, and dramatically attenuated the elevation of spleen index caused by LPS on d 35 (p<0.05). Furthermore, serum interleukin-6 (IL-6) concentration decreased with AAF supplementation on d 21 (p<0.05). Diet treatment and LPS challenge exhibited a significant interaction for the concentration of IL-1β (d 21) and IL-6 (d 35) in serum (p<0.05). Additionally, AAF supplementation mitigated the increase of IL-1β, IL-6 in liver and spleen induced by LPS on d 21 and 35 (p<0.05). This study also showed that AAF supplementation significantly reduced the expression of IL-1β (d 21) and nuclear transcription factor kappa-B p65 (d 21 and 35) in liver (p<0.05), and dietary AAF and LPS treatment exhibited significant interaction for the gene expression of IL-6 (d 21), toll like receptor 4 (d 35) and myeloid differentiation factor 88 (d 35) in spleen (p<0.05). Conclusion: In conclusion, AAF could be used as a potential natural immunomodulator to improve growth performance and alleviate immune stress in broilers challenged with LPS.

Development of Cell Therapeutics against Ischemic Vascular Diseases Using Mesenchymal Stem Cells: From Bench to Bed (중간엽줄기세포(MSC)를 이용한 허혈성 혈관질환 치료를 위한 세포치료제 개발: 기초연구에서 임상연구)

  • Lee, Eun Ji;Park, Shin Hu;Seo, Jeong Ho;An, Hyo Gyung;Nam, Si Hyun;Kwon, Sang-Mo
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.567-577
    • /
    • 2022
  • Recently, the prevalence of ischemic diseases, such as ischemic heart disease, cerebral ischemia, and peripheral arterial disease, has been continuously increasing due to the aging population. The current standardized treatment for ischemic diseases is reperfusion therapy through pharmacotherapy and surgical approaches. Although reperfusion therapy may restore the function of damaged arteries, it is not effective at restoring the function of the surrounding tissues that have been damaged due to ischemia. Therefore, it is necessary to develop a new treatment strategy that can safely and effectively treat ischemic damage and restore the function of surrounding tissues. To overcome these limitations, stem cell-based therapy to regenerate the damaged region has been studied as a promising strategy for ischemic vascular diseases. Mesenchymal stem cells (MSCs) can be isolated from diverse tissues and have been shown to be promising for the treatment of ischemic disease by regenerating damaged tissues through immunomodulation, the promotion of angiogenesis, and the secretion of various relevant factors. Moreover, new approaches to enhancing MSC function, such as cell priming or enhancing transplantation efficiency using a 3D culture method, have been studied to increase stem cell therapeutic efficacy. In this review, we provide various strategies by which MSCs are used to treat ischemic diseases, and we discuss the challenges of MSC transplantation, such as the differentiation, proliferation, and engraftment of MSCs at the ischemic site.

Antioxidant and Anti-inflammatory Activities of Atractylodes japonica According to Extract Methods (백출 용매추출 방법에 따른 항산화 활성 및 항염증 효과)

  • Oh, Hee-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1543-1552
    • /
    • 2021
  • Atractylodes japonica has been widely used in a traditional Korean herbal medicine exerting various pharmacological activities such as diauretic action, asriction, anti-allergy, neuroprotective activity, anti-cancer, immunomodulation and gastrointestinal protective effect. This study was to investigate the antioxidant, nitric oxide and inflammatory cytokines production of A. japonica extract by water and 70% ethanol. DPPH and ABTS free radical scavenging activity were increased in a dose-dependent manners with both extracts and there was no difference with extract solvents. 70% ethanol extract of A. japonica showed a very strong inhibitory effect on NO production. Both extracts of A. japonica significantly reduce the expression of iNOS and COX-2 proteins involved in NO prodction. A. japonica extract by water and 70% ethanol inhibited LPS-induced proinflammatory cytokines such as IL-6 and IL-1b. In this study, 70% ethanol extract of A. japonica significantly suppresses LPS-induced NO and inflammatory cytokine production. Therefore it can be widely used to treat and improve inflammatory diseases.

Effect of Feeding Red Ginseng Marc on Vital Reaction in Laying Hens under Stress Task (홍삼 부산물이 스트레스에 대한 산란계 생체반응에 미치는 영향)

  • Hong, Joon-Ki;Bong, Mi-Hee;Park, Jun-Cheol;Moon, Hong-Kil;Lee, Sang-Cheul;Lee, Jun-Heon;Hwang, Seong-Gu
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • This study was conducted to determine the possible use of Red Ginseng marc as stress inhibiter in thermal stress (temperature humidity index 86) and lipopolysaccharide (LPS) - exposed laying hens by investigating their effects on laying performance, blood biochemical parameters, immunoglobulin concentration and serum superoxide dismutase (SOD) like ability. A total of forty-five 52-wk-old laying hens (ISA Brown) were divided into 3 treatment groups with 5 replicates of 3 birds in each group. NC (negative control, no immune substances), PC (positive control, ${\beta}$-glucan 25 ppm) and RGM (Red Ginseng Marc 3%) were added in feed with respective substance. Egg production in RGM was significantly increased in comparison with NC groups for 8 weeks (P<0.05). On blood biochemical parameters, effects of ambient temperature is definite by showing significant difference in aspartate aminotransferase and others (P<0.05), but RGM both before and after thermal stimulation have no significant difference in comparison with other groups. And for 3 weeks after thermal stimulation, laying performance was also not significantly different among treatments. Immunoglobulin M content and SOD like activities after challenge with LPS were higher in the RGM and PC than NC (P<0.05). In conclusion, although ineffective as inhibiter in thermal stress, dietary supplementation of Red Ginseng marc improved SOD like activity and immune system by regulating immunoglobulin content in laying hens. These findings have laid the foundation for future studies of immunomodulation in laying hens fed Red Ginseng Marc and of evaluation of heat stress inhibitor.

Photoimmunology -Past, Present and Future-

  • Daynes, Raymond A.;Chung, Hun-Taeg;Roberts, Lee K.
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.3
    • /
    • pp.311-329
    • /
    • 1986
  • The experimental exposure of animals to sources of ultraviolet radiation (UVR) which emit their energy primarily in the UVB region (280-320nm) is known to result in a number of well-described changes in the recipient's immune competence. Two such changes include a depressed capacity to effectively respond immunologically to transplants of syngeneic UVR tumors and a markedly reduced responsiveness to known inducers of delayedtype (DTH) and contact hypersensitivity (CH) reactions. The results of experiments that were designed to elucidate the mechanisms responsible for UVR-induced immunomodulation have implicated: 1) an altered pattern of lymphocyte recirculation, 2) suppressor T cells(Ts), 3) deviations in systemic antigen presenting cell (APC) potential. 4) changes in the production of interleukin-1-like molecules, and 5) the functional inactivation of epidermal Langerhans cells in this process. The exposure of skin to UVR, therefore, causes a number of both local and systemic alterations to the normal host immune system. In spite of this seeming complexity and diversity of responses, our recent studies have established that each of the UVR-mediated changes is probably of equal importance to creating the UVR-induced immunocompromised state. Normal animals were exposed to low dose UVR radiation on their dorsal surfaces under conditions where a $3.0\;cm^2$ area of skin was physically protected from the light energy. Contact sensitization of these animals with DNFB, to either the irradiated or protected back skin, resulted in markedly reduced CH responses. This was observed in spite of a normal responsiveness following the skin sensitization to ventral surfaces of the UVR-exposed animals. Systemic treatment of the low dose UVR recipients with the drug indomethacin (1-3 micrograms/day) during the UVR exposures resulted in a complete reversal of the depressions observed following DNFB sensitization to "protected" dorsal skin while the altered responsiveness found in the group exposed to the skin reactive chemical through directly UVR-exposed sites was maintained. These studies implicate the importance of EC as effective APC in the skin and also suggest that some of the systemic influences caused by UVR exposure involve the production of prostaglandins. This concept was further supported by finding that indomethacin treatment was also capable of totally reversing the systemic depressions in CH responsiveness caused by high dose UVR exposure (30K joules/$m^2$) of mice. Attempts to analyze the cellular mechanisms responsible established that the spleens of all animals which demonstrated altered CH responses, regardless of whether sensitization was through a normal or an irradiated skin site, contained suppressor cells. Interestingly, we also found normal levels of T effector cells in the peripheral lymph nodes of the UVR-exposed mice that were contact sensitized through normal skin. No effector cells were found when skin sensitization took place through irradiated skin sites. In spite of such an apparent paradox, insight into the probable mechanisms responsible for these observations was provided by establishing that UVR exposure of skin results in a striking and dose-dependent blockade of the efferent lymphatic vessels in all peripheral lymph nodes. Therefore, the afferent phases of immune responses can apparently take place normally in UVR exposed animals when antigen is applied to normal skin. The final effector responses, however, appear to be inhibited in the UVR-exposed animals by an apparent block of effector cell mobility. This contrasts with findings in the normal animals. Following contact sensitization, normal animals were also found to simultaneously contain both antigen specific suppressor T cells and lymph node effector cells. However, these normal animals were fully capable of mobilizing their effector cells into the systemic circulation, thereby allowing a localization of these cells to peripheral sites of antigen challenge. Our results suggest that UVR is probably not a significant inducer of suppressor T-cell activity to topically applied antigens. Rather, UVR exposure appears to modify the normal relationship which exists between effector and regulatory immune responses in vivo. It does so by either causing a direct reduction in the skin's APC function, a situation which results in an absence of effector cell generation to antigens applied to UVR-exposed skin sites, inhibiting the capacity of effector cells to gain access to skin sites of antigen challenge or by sequestering the lymphocytes with effector cell potential into the draining peripheral lymph nodes. Each of these situations result in a similar effect on the UVR-exposed host, that being a reduced capacity to elicit a CH response. We hypothesize that altered DTH responses, altered alloresponses, and altered graft-versus-host responses, all of which have been observed in UVR exposed animals, may result from similar mechanisms.

  • PDF

Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages (유근피 추출물이 대식세포 면역조절에 미치는 영향)

  • Kwon, Da Hye;Kang, Hye-Joo;Choi, Yung Hyun;Chung, Kyung Tae;Lee, Jong Hwan;Kang, Kyung Hwa;Hyun, Sook Kyung;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.50-58
    • /
    • 2016
  • The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.

Effect of Black Garlic Extract on Cytokine Generation of Mouse Spleen Cells (흑마늘(Black garlic) 추출물이 마우스 비장세포의 Cytokine 생성에 미치는 영향)

  • Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Min Jeong;Lee, Hye Hyeon;Ryu, En Ju;Joo, Woo Hong;Kim, Kwang Hyuk;Jeong, Yong Kee
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The effect of black garlic extract on the activation of spleen cells from a C57BL6 mouse was investigated to examine immune activities of of fermented black garlic containing a variety of bioactive substances. xtract obtained from the concentration of commercial Namhae black garlic was used for the analysis of immune activities. Treatment with the extract increased the expression of interleukin-2 (IL-2) cytokine. The simultaneous administration of the extract plus lipopolysaccharide (LPS) increased the expression of IL-2, tumor necrosis factor (TNF)-${\alpha}$, and interferon (IFN)-${\gamma}$ compared with that of a control group. This result suggests that cellular immunity can be induced by macrophages, resulting in the expression of T lymphocytes and T helper type 1 (Th1) cells. In addition, treatment with the extract increased the late response of IL-6 cytokines, and the extract plus LPS augmented the expression of IL-4 and IL-6 compared with that of an LPS-treated group. Meanwhile, the extract plus LPS decreased the late response of IL-10, suggesting that humoral immunity can be activated by stimulating B lymphocytes, suppressing cellular immunity, and effectively modulating the conversion into humoral immune responses. These findings demonstrate that the black garlic extract activates Th1 and Th2 cells by stimulating T lymphocytes in mouse spleen cells and leads to immunomodulation by activating cellular and humoral immune responses of the immune system.

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells (인간 단핵구 THP-1 세포에서 β-glucan으로 인한 TNF-α 분비 증가 효과)

  • Keum, Bo Ram;Hyeon, Jin Yi;Choe, So Hui;Jin, Ji Young;Jeong, Ji Woo;Lim, Jong Min;Park, Dong Chan;Cho, Kwang Keun;Choi, Eun Young;Choi, In Soon
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1256-1261
    • /
    • 2017
  • ${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.

Immunomodulatory and Anti-Inflammatory Activity of Mulberry (Morus alba) Leaves Fermented with Hericium erinaceum Mycelium by Solid-State Culture (Solid-State Culture를 이용하여 조제한 노루궁뎅이버섯 균사체-뽕잎발효물의 면역 및 항염증 활성)

  • Kim, Hoon;Jeong, Jae-Hyun;Shin, Ji-Young;Kim, Dong-Goo;Yu, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.9
    • /
    • pp.1333-1339
    • /
    • 2011
  • After mulberry (Morus alba) leaves were fermented with Hericium erinaceum mycelium by solid-state culture to enhance physiological activity, fermented mulberry leaves (MA-HE) was extracted by hot-water (MA-HEHW) and ethanol (MA-HE-E). MA-HE-HW showed enhanced mitogenic and intestinal immune system modulating activities (1.41 and 1.52 fold of saline control, respectively) compared to hot-water extracts of non-fermented mulberry leaves (MA-HW) and H. erinaceum mycelium (HE-HW) at $100\;{\mu}g$/mL. Meanwhile, when we tested the inhibitory effects of extracts on nitric oxide (NO), tumor necrosis factor (TNF)-${\alpha}$, and interleukin (IL)-$1{\beta}$ and IL-6 production, MA-HE-E significantly inhibited these pro-inflammatory mediators in LPS-stimulated RAW 264.7 cells (45.1, 41.3, 70.2, and 55.7% inhibition of LPS control at $1,000\;{\mu}g$/mL). In addition, MA-HE-HW and MA-HE-E did not show any cytotoxicity on RAW 264.7 cells at $1,000\;{\mu}g$/mL whereas HE-E and MA-E indicated cytotoxicity (80.1 and 30.7% cell viability of saline control). These results suggest that mulberry leaves fermented with H. erinaceum by solid-state culture might have enhanced immunomodulatory and anti-inflammatory effects compared to non-fermented mulberry leaves, resulting in ingredients biotransformed for fermentation with H. erinaceum mycelium.

Proanthocyanidins Suppresses Lipopolysaccharide-stimulated Inflammatory Responses via Heme Oxygenase-1 Induction in RAW264.7 Macrophages (프로안토시아니딘의 항염증효과)

  • Cheon, Hye-Jin;Park, Sun Young;Jang, Hee-Ji;Cho, Da-Young;Jung, Jiwon;Park, Gimin;Jeong, Kyeong Mi;Kim, Jin-Kyung
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • Proanthocyanidins are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, immunomodulation, DNA repair, and antitumor activity. Among immune cells, macrophages are crucial players in a variety of inflammatory responses to environmental conditions. However, it has been widely reported that macrophages cause chronic inflammation and are involved in a variety of diseases, such as obesity, diabetes, metabolic syndrome, and cancer. In this study, we report the suppressive effect of proanthocyanidins via the heme oxygenase-1 (HO-1)-related system, on the immune response of the LPS-stimulated mouse macrophage cell line RAW264.7. Increased HO-1 expression at mRNA and protein levels were found in proanthocyanidins-treated RAW264.7 cells. Further, proanthocyanidins enhanced nuclear factor-erythroid 2-related factor 2 translocation into the nucleus. RAW264.7 cells were treated with lipopolysaccharide (LPS) with or without proanthocyanidins, and inflammatory mediator expression levels were assessed. Proanthocyanidins treatment resulted in the attenuation of nitric oxide production and inducible nitric oxide synthase expression in LPS-stimulated RAW264.7 cells. In addition, mRNA and protein expression of proinflammatory cytokines, such as tumor necrosis factor-${\alpha}$ and interleukin-6, was inhibited by proanthocyanidins treatment in LPS-stimulated RAW264.7 cells. These findings support proanthocyanidins as a promising anti-inflammatory agent.