Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.11.1256

β-glucan Stimulates Release of TNF-α in Human Monocytic THP-1 Cells  

Keum, Bo Ram (Department of Bioscience, Silla University)
Hyeon, Jin Yi (Department of Bioscience, Silla University)
Choe, So Hui (Department of Bioscience, Silla University)
Jin, Ji Young (Department of Bioscience, Silla University)
Jeong, Ji Woo (Department of Life Science, Silla University)
Lim, Jong Min (Glucan Corporation)
Park, Dong Chan (Glucan Corporation)
Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongnam National University of Science and Technology)
Choi, Eun Young (Department of Life Science, Silla University)
Choi, In Soon (Department of Bioscience, Silla University)
Publication Information
Journal of Life Science / v.27, no.11, 2017 , pp. 1256-1261 More about this Journal
Abstract
${\beta}$-glucan is a constituent of the cell wall of fungi, yeast and plants. It plays an important role in the immune system such as activation of immunocyte, release of pro-inflammatory and anti-cancer effect. The immune system maintains a healthy immune homeostasis. However, when pathogenic substances enter the body, immune homeostasis can break down and disease can be triggered. Therefore, we studied a substance that regulates immune homeostasis. The purpose of the study we demonstrated whether the ${\beta}$-glucan can be applied to the immune-modulation effects in human monocytic THP-1 cells. ${\beta}$-glucan was incubated in THP-1 cells at various concentrations. The $TNF-{\alpha}$ mRNA expression and protein levels were analyzed by ELISA and Real-time PCR. Additionally, the expression of MAPKs (p38 and JNK), $I{\kappa}B-{\alpha}$ and $NF-{\kappa}B$ p50 were analyzed by western blot. ${\beta}$-glucan enhanced the production of $TNF-{\alpha}$ mRNA expression and protein levels in human monocytic THP-1 cells. In addition, activation of MAPKs (p38 and JNK) and $NF-{\kappa}B$ p50 induced by ${\beta}$-glucan were increased. The study suggests that ${\beta}$-glucan contributes to immune-stimulation effect by production $TNF-{\alpha}$ in human monocytic THP-1 cells, and that MAPKs and $NF-{\kappa}B$ p50 are involved in the process. Synthetically, we have suggested ${\beta}$-glucan may be improved to immune system effect in human monocytic THP-1 cells.
Keywords
${\beta}$-glucan; immunomodulation; $NF-{\kappa}B$ p50; THP-1; $TNF-{\alpha}$;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Akramiene. D., Kondrotas, A., Didziapetriene, J. and Kevelaitis, E. 2007. Effects of beta-glucans on the immune system. Medicina (Kaunas). 43, 597-606.   DOI
2 Alvarez, B., Quinn, L. S., Busquets, S., Lopez-Soriano, F. J. and Argiles, J. M. 2001, Direct effects of tumor necrosis factor alpha (TNF-alpha) on murine skeletal muscle cell lines. Bimodal effects on protein metabolism. Eur. Cytokine Netw. 12, 399-410.
3 Arena, M. P., Spano, G. and Fiocco, D. 2017. ${\beta}$-Glucans and Probiotics. Am. J. Immunol. 13, 34-44.   DOI
4 Cavalcanti, Y. V., Brelaz, M. C., Neves, J. K., Ferraz, J. C. and Pereira, V. R. 2012. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm. Med. 2012. 745483-745493.
5 Chan, G. C., Chan, W. K. and Sze, D. M. 2009. The effect of ${\beta}$-glucan on human immune and cancer cells. J. Hematol Oncol. 2, 1-11.   DOI
6 Choi, E. Y., Lee, S. S., Hyeon, J. Y., Choe, S. H., Keum, B. R., Lim, J. M., Park, D. C., Choi, I. S. and Cho, K. K. 2016. Effects of ${\beta}$-glucan on the release of nitric oxide by macrophages stimulated with lipopolysaccharide. Asian-Australas. J. Anim. Sci. 29, 1664-1674.   DOI
7 Choi, M. W., Park, I. D., Park, K. Y. and Kim, K. H. 2011. Effects of ${\beta}$-lapachone on the production of inflammatory cytokines in mice. Cancer Prev. Res. 16, 155-160.
8 Dapat, I. C., Pascapurnama, D. N., lwasaki, H., Labayo, H. K., Haorile, C. Y., Egawa, S. and Hattori, T. 2017. Secretion of galectin-9 as a DAMP during dengue virus infection in THP-1 cells. Int. J. Mol. Sci. 18, 1644-1653.   DOI
9 Hong, K. H., Jang, K. H. and Kang, S. A. 2016. Effects of dietary ${\beta}$-glucan on short chain fatty acids composition and intestinal environment in rats. Kor. J. Food Nutr. 29, 162-170.   DOI
10 Joo, J. D. 2009. The use of intra-cellular signaling pathways in anesthesiology and pain medicine field. Kor. J. Anesthesiol. 57, 277-283.   DOI
11 Kang, S. W. 2013. Role of reactive oxygen species in cell death pathways. Hanyang Med. Rev. 33, 77-82.   DOI
12 Kim, H. W. 2014. Immune mechanism of mushroom beta glucan. J. Mushrooms. 18, 31-38.
13 Kim, W. J., Yoon, T. J., Kim, D. W., Moon, W. K. and Lee, K. H. 2010. Immunostimulating activity of beta-glucan isolated from the cell wall of mutant Saccharomyces cerevisiae, and its anti-tumor application in combination with cisplatin. Kor. J. Food Nutr. 23, 141-146.
14 Kofuji, K., Aoki, A., Tsubaki, K., Konishi, M., Isobe, T. and Murata, Y. 2012. Antioxidant activity of ${\beta}$-glucan. ISRN Pharm. 2012, 10.5402/2012/125864.   DOI
15 Kwon, H. K., Hwang, J. S., So, J. S. and Im, S. H. 2008. Immunological homeostasis and inflammatory immune disorders. Kor. Soc. Mol. Cells. 3. 48-69.
16 Lee, J. S., Lee, S. H., Jang, Y. M., Lee, J. D., Lee, B. H. and Jung, J. Y. 2011. Macrophage and anticancer activities of feed additives on ${\beta}$-glucan from Schizophyllum commune in breast cancer cells. J. Kor. Soc. Food Sci. Nutr. 40, 949-955.   DOI
17 Lei, N., Wang, M., Zhang, L., Xiao, S., Fei, C., Wang, X., Zhang, K., Zheng, W., Wang, C., Yang, R. and Xue, F. 2015. Effects of low molecular weight yeast ${\beta}$-glucan on antioxidant and immunological activities in mice. Int. J. Mol. Sci. 16, 21575-21590.   DOI
18 Park, E. K., Kang, S. M. and Leem, M. H. 2003. A study on the variation of skin moisture, oil (sebum), melanin and erythema index after application of ${\beta}$-glucan. Asian J. Beauty Cosmetol. 1, 83-94.
19 Park, W. Y., Sung, N. Y., Byun, E. H., Oh, K. H., Byun, M. W. and Yoo, Y. C. 2015. Immuno-modulatory activities of polysaccharides separated from Jubak in macrophage cells. J. Kor. Soc. Food Sci. Nutr. 44, 1079-1083.   DOI
20 Park, K. S. and Kim, K. J. 2010. Effects of atopic dermatitis induced materials on the expression of cytokine genes in human monocytes and mast cells. J. Kor. Med. Ophthalmol. Otolaryngol. Dermatol. 23, 41-56.
21 Seo, H. P., Kim, J. M., Shin, H. D., Kim, T. K., Chang, H. J., Park, B. R. and Lee, J. W. 2002. Production of be ta-1,3/1,6-glucan by Aureobasidium pullulans SM-2001. Kor. J. Biotechnol. Bioeng. 17, 376-380.
22 Shi, C. and Parmer, E. G. 2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762-774.   DOI
23 Stier, H., Ebbeskotte, V. and Gruenwald, J. 2014. Immunemodulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr. J. 13, 38-47.   DOI
24 Yoo, S. A., Kim, O. K., Nam, D. E., Kim, Y. J., Bae, H. Y., Jum, W. J. and Lee, J. M. 2014. Immunomodulatory effects of fermented Curcuma longa L. extracts on RAW 264.7 cells. J. Kor. Soc. Food Sci. Nutr. 43, 216-223.   DOI
25 Yu, A. R., Park, H. Y., Kim, Y. S., Ha, S. K., Hong, H. D. and Choi, H. D. 2012. Immuno-enhancing effect of seed extracts on a RAW 264.7 macrophage cell line. J. Kor. Soc. Food Sci. Nutr. 41, 1671-1676.   DOI