• Title/Summary/Keyword: Immobilized Lipase

Search Result 83, Processing Time 0.022 seconds

Development of Magnetically Separable Immobilized Lipase by Using Cellulose Derivatives and Their Application in Enantioselective Esterification of Ibuprofen

  • Lee, Go-Woun;Joo, Hong-Il;Kim, Jung-Bae;Lee, Jung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.465-471
    • /
    • 2008
  • Highly active, stable, and magnetically separable immobilized enzymes were developed using carboxymethyl cellulose (CMC) and diethylaminoethyl cellulose DEAE-C; hereafter designated "DEAE" as supporting materials. Iron oxide nanoparticles penetrated the micropores of the supporting materials, rendering them magnetically separable. Lipase (LP) was immobilized on the surface of the supporting materials by using cross-linked enzyme aggregation (CLEA) by glutaraldehyde. The activity of enzyme aggregates coated on DEAE was approximately 2 times higher than that of enzyme aggregates coated on CMC. This is explained by the fact that enzyme aggregates with amine residues are more efficient than those with carboxyl residues. After a 96-h enantioselective ibuprofen esterification reaction, 6% ibuprofen propyl ester was produced from the racemic mixture of ibuprofen by using DEAE-LP, and 2.8% using CMC-LP.

Prediction of Continuous Reactors Performance Based on Batch Reactor Deactivation Kinetics Data of Immobilized Lipase

  • Murty, V.Ramachandra;Bhat, Jayadev;Muniswaran, P.K.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.4
    • /
    • pp.225-230
    • /
    • 2002
  • Experiments on deactivation kinetics of immobilized lipase enzyme from Candida cyl-indracea were performed in stirred bath reactor using rice bran oil as the substrate and temperature as the deactivation parameter. The data were fitted In first order deactivation model. The effect of temperature on deactivation rate was represented by Arrhenius equation. Theoretical equations were developed based on pseudo-steady state approximation and Michaelis -Menten rate expression to predict the time course of conversion due to enzyme deactivation and apparent half-life of the immobilized enzyme activity in PFR and CSTH under constant feed rate polity for no diffusion limitation and diffusion limitation of first order. Stability of enzyme in these continuous reactors was predicted and factors affecting the stability were analyzed.

Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide (초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성)

  • Back, Sung-Sin;Kwon, Kyung-Tae;Jung, Go-Woon;Ahn, Hyaung-Min;Sim, Jeong-Eun;Kang, Hee-Moon;Chun, Byung-Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.546-552
    • /
    • 2009
  • Enzymatic ethanolysis of wheat germ oil with immobilized lipase was investigated for enhancing the function of wheat germ oil. Ethanolysis reactions were carried out in two different systems; non-pressurized and pressurized system. In non-pressurized system, the enzymatic ethanolysis was carried out in an erlenmeyer flask(25 ml) containing a mixture of wheat germ oil and 99.90% ethanol using 1~5 wt% immobilized lipase as Lipozyme TL-IM and Lipozyme RM-IM and the reaction mixtures were incubated at $40{\sim}70^{\circ}C$ with 120 rpm shaking. In pressurized system, the enzymatic ethanolysis was carried out at various condition; immobilized lipase concentration(2 wt%), reaction time(24 h), reaction temperature($40{\sim}60^{\circ}C$) and reaction pressure(75, 100, 150, 200 bars). The samples obtained from each fraction were analyzed by HPLC for analysing contents of monoglyceride, diglyceride, and triglyceride. The conversion of wheat germ oil relied on the reaction temperature and the concentration of immobilized lipase. The optimum condition of enzymatic ethanolysis in non-pressurized and pressurized systems was at $50^{\circ}C$ and 100 bar.

Production of Biodiesel Using Immobilized Lipase from Proteus vulgaris (Proteus vulgaris에서 유래한 리파아제의 고정화 및 바이오디젤 생산)

  • Yoon, Shin-Ah;Han, Jin-Yee;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.238-244
    • /
    • 2011
  • Biodiesel, mono-alkyl esters of long chain fatty acids, is one of the alternative fuels derived from renewable lipid feedstock, such as vegetable oils or animal fats. For decade, various lipases have been used for the production of biodiesel. However, the production of biodiesel by enzymatic catalyst has profound restriction in industry application due to high cost. To overcome these problems, many research groups have studied extensively on the selection of cheap oil sources, the screening of suitable lipases, and development of lipase immobilization methods. In this study, we produced biodiesel from plant oil using Proteus vulgaris lipase K80 expressed in Escherichia coli cells. The recombinant lipase K80 was not only expressed in high level but also had high specific lipase activity and high stability in various organic solvents. Lipase K80 could produce biodiesel from olive oil by 3-stepwise methanol feeding method. The immobilized lipase K80 also produced biodiesel using the same 3-stepwise method. The immobilized lipase could produce biodiesel efficiently from various plant oils and waste oils.

Study on the Immobilized Lipase-Mediated Selective Synthesis of 1,3-Diglyceride (고정화 효소를 이용한 1,3-디글리세리드의 선택적 합성에 관한 연구)

  • Chung, Dae-won;Cho, Mi Hye
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2009
  • It is known that 1,3-diglyceride (1,3-DG) hardly accumulates inside human body because the metabolism of 1,3-DG is entirely different from that of general fats such as triglycerides (TG). This research focuses on the selective synthesis of 1,3-DG by the esterification reaction using an immobilized lipase. For a reaction between glycerin and oleic acid (OA) with a mole ratio of 1 : 2 under vacuum, changes in the compositions of monoglyceride (MG), TG and DG and the contents of 1,3-isomers in DG were investigated, as a function of reaction temperature and the amount of lipase. The reactivities determined by the rate of the consumption of OA became higher with increased in temperature and the amount of lipase. Changes in the compositions of MG, DG and TG, however, occurred after the DG content reached maximum, which were found to be dependent on various factors. TG was a main product, and significant decrease in the amount of both 1,3-DG and DG were observed, when reactions were carried out at high temperatures or when 10 wt% of lipase was used.

Activity and Stability of Immobilized Enzyme on Silk Sericin Bead

  • Oh, Hanjin;Lee, Ki Hoon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.329-332
    • /
    • 2013
  • In present preliminary report, we showed the possibility of silk sericin (SS) in enzyme immobilization. SS beads were prepared and enzymes were immobilized on it. The specific activity of immobilized a-chymotrypsin retained more than 87% compared to the free enzyme. The immobilized a-chymotrypsin has better stability against ethanol especially those immobilized on SS beads coagulated in methanol. Immobilized trypsin and lipase had also comparable apparent activity compared to free enzyme. Our result indicates that SS could be a good candidate for enzyme immobilization support due to its hydrophilicity.

Enzymatic Methanolysis of Castor Oil for the Synthesis of Methyl Ricinoleate in a Solvent-Free Medium

  • YANG JUNG-SEOK;JEON GYU-JONG;HUR BYUNG-KI;YANG JI-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1183-1188
    • /
    • 2005
  • Several lipases of commercial grade were screened to catalyze the methanolysis of castor oil, and an immobilized Candida antarctica (Novozym 435) had the highest activity among the lipases tested. To enhance the yield of methyl ricinoleate, several reaction parameters were optimized. The optimum temperature was $50^{\circ}C$, and the original water content of lipase was sufficient to maintain the activity of lipase, and additional water supplied inhibited the methanolysis of castor oil. Because the lipase was deactivated by methanol, the reaction was tested by three-step addition of 1 molar equivalent of methanol to the oil. However, the oil was not completely converted to its methyl esters. The final reaction mixture using 3 molar equivalents of methanol to the oil consisted of $70\%$ methyl ricinoleate, $18\%$ monoricinoleate, $11\%$ diricinoleate, and trace triricinoleate at the equilibrium state. The yield of methyl ricinoleate was $97\%$ at 6 molar ratio of methanol to the oil with 300g of castor oil and 6g of immobilized Candida antarctica at $50^{\circ}C$ within 24 h.

Enzyme-catalyzed Transesterification of Soybean Oil into Biodiesel (효소촉매 전이에스테르화에 의한 대두유의 Biodiesel화)

  • Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • Biodiesel as methyl esters derived from vegetable oils has considerable advantages in terms of environmental protetion. In the present work, methyl esters were produced from soybean oil by lipase-catalyzed transesterification. To reduce inactivation of commercial immobilized lipases emulsified two-step process was developed using the stepwise addition of methanol with 4:1 molar ratio at 4h intervals. Also with immobilized lipase from Candida antarctica(Novozym 435) high conversion of 98.5 percent was possible at $45^{\circ}C$ of reaction temperature with 4:1 of methanol-to-oil molar ratio and 1%(v/v) methyl glucoside oleic polyester as an emulsifier in the presence of cosolvent.

Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won;Yi, Song-Se;Kim, Ju-Han;Lee, Yoon-Sik;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

Immobilization of Rhizopus chinesis using Polyurethane Foams (Polyurethane Foam을 이용한 리파아제 생산 균주 Rhizopus chinesis의 고정화)

  • 주지선;류희욱장용근
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.172-178
    • /
    • 1992
  • A simple and effective method has been developed for the immobilization of lipase producing Rhizopus chinensis on polyurethane foam. In this method, the fungal cells with 1, 3 specific lipase in there inside are immobilized within the foam matrix. Four types of commercially available polyurethane foam were tested. The ultimate purpose of the process is to produce low-cost biocatalysts for lipase-catalyzed reactions, which are being increasingly used for industrial applications. Effects of several parameters were studied on the cell loading and the hydrolytic activity of intracellular lipase after acetone drying. These parameters were the type, size, and amount of polyurethane foam. In all the cases, the intracellular lipase activity obtained with the foam was approximately twice greater than that obtained in the absence of the foam.

  • PDF