• Title/Summary/Keyword: Imaginary

Search Result 790, Processing Time 0.031 seconds

On the performance of improved quadrature spatial modulation

  • Holoubi, Tasnim;Murtala, Sheriff;Muchena, Nishal;Mohaisen, Manar
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.562-574
    • /
    • 2020
  • Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.

Prime Elements and Irreducible Polynomials over Some Imaginary Quadratic Fields

  • Singthongla, Patiwat;Kanasri, Narakorn Rompurk;Laohakosol, Vichian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.581-600
    • /
    • 2017
  • A classical result of A. Cohn states that, if we express a prime p in base 10 as $$p=a_n10^n+a_{n-1}10^{n-1}+{\cdots}+a_110+a_0$$, then the polynomial $f(x)=a_nx^n+a_{n-1}x^{n-1}+{\cdots}+a_1x+a_0$ is irreducible in ${\mathbb{Z}}[x]$. This problem was subsequently generalized to any base b by Brillhart, Filaseta, and Odlyzko. We establish this result of A. Cohn in $O_K[x]$, K an imaginary quadratic field such that its ring of integers, $O_K$, is a Euclidean domain. For a Gaussian integer ${\beta}$ with ${\mid}{\beta}{\mid}$ > $1+{\sqrt{2}}/2$, we give another representation for any Gaussian integer using a complete residue system modulo ${\beta}$, and then establish an irreducibility criterion in ${\mathbb{Z}}[i][x]$ by applying this result.

A Study on Soil Reaction of Pile Fonndation Subjected to Dynamic Loading (동적 하중을 받는 말뚝기호의 지반반력에 관한 연구)

  • Kim, Young-Su;Lee, Song;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1990
  • To investigate the effects of soil properties of the soft zone around a pile subjected 1,o the horizontal harmonic vibration, the parametric study is perfomed. The determination of the soil reaction or stiffness of the Winkler springs representing the soil around a pile is performed by dividing the soil profile into a number of homogeneous obtained from this study are as follows : 1) The real and imaginary parts of the stiffness show clear variations for the different shear modulus ratios, poisson's ratios, and distance retios to outer boundary as the dimensionless frequency increases. The differences are more pronounced for the imaginary part of the stiffness. 2) The stiffness of soil shows clear decrease. The real parts of the stiffness show larger as the frequency increases. On the other hand, the imaginary parts of the stiffness show smaller.

  • PDF

Discrete Event Simulation and Its Application to Railway Maintenance Evaluation System (철도차량 유지보수 장비의 Discrete Event Simulation 기반 기초 성능평가 및 적용방안 연구)

  • Mun Hyeong-Seok;Jang Chang-Du;Ha Yun-Seok;Jo Yeong-Cheon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.331-336
    • /
    • 2005
  • A lot of manufacturing knowledge and method have applied to increase manufacturing efficiency in industry field. DES(Discrete Event Simulation) is one of solution to deal with manufacturing problems in factory. Beginning of research, old maintenance system of KNR ( Korea National Railroad) and its technical problems are basically investigated. KNR has maintained railway vehicle with their own solution based on experience. Very advanced railway vehicles such as KTX (Korea Train Express) and TTX(Tilting Train Express) will be difficult to maintain with their old maintenance method. In order to apply knowledge of DES, maintenance field of railway must be considered. Imaginary maintenance machine are selected to variable of DES. Maintenance capability of each machine will be evaluated base on imaginary data from imaginary machine. The machine could be very expensive as well as difficult to replace. Target of research is minimization of number of machine in railway workshop. So basic knowledge of discrete event simulation is introduced. Then five essential stages of discrete event simulation are provided. Each maintenance case defined as event. Each event is discrete and simulated base on different case such as one maintenance line with one machine and one maintenance line with two machines in railway workshop. simple maintenance method, discrete event simulation, will be come out very powerful in complicate maintenance system and will be helpful to reduce maintenance cost as well as maintenance labor.

  • PDF

8-RANKS OF CLASS GROUPS OF IMAGINARY QUADRATIC NUMBER FIELDS AND THEIR DENSITIES

  • Jung, Hwan-Yup;Yue, Qin
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1249-1268
    • /
    • 2011
  • For imaginary quadratic number fields F = $\mathbb{Q}(\sqrt{{\varepsilon}p_1{\ldots}p_{t-1}})$, where ${\varepsilon}{\in}${-1,-2} and distinct primes $p_i{\equiv}1$ mod 4, we give condition of 8-ranks of class groups C(F) of F equal to 1 or 2 provided that 4-ranks of C(F) are at most equal to 2. Especially for F = $\mathbb{Q}(\sqrt{{\varepsilon}p_1p_2)$, we compute densities of 8-ranks of C(F) equal to 1 or 2 in all such imaginary quadratic fields F. The results are stated in terms of congruence relation of $p_i$ modulo $2^n$, the quartic residue symbol $(\frac{p_1}{p_2})4$ and binary quadratic forms such as $p_2^{h+(2_{p_1})/4}=x^2-2p_1y^2$, where $h+(2p_1)$ is the narrow class number of $\mathbb{Q}(\sqrt{2p_1})$. The results are also very useful for numerical computations.

SYNTHESIS OF STEREO-MATE THROUGH THE FUSION OF A SINGLE AERIAL PHOTO AND LIDAR DATA

  • Chang, Ho-Wook;Choi, Jae-Wan;Kim, Hye-Jin;Lee, Jae-Bin;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.508-511
    • /
    • 2006
  • Generally, stereo pair images are necessary for 3D viewing. In the absence of quality stereo-pair images, it is possible to synthesize a stereo-mate suitable for 3D viewing with a single image and a depth-map. In remote sensing, DEM is usually used as a depth-map. In this paper, LiDAR data was used instead of DEM to make a stereo pair from a single aerial photo. Each LiDAR point was assigned a brightness value from the original single image by registration of the image and LiDAR data. And then, imaginary exposure station and image plane were assumed. Finally, LiDAR points with already-assigned brightness values were back-projected to the imaginary plane for synthesis of a stereo-mate. The imaginary exposure station and image plane were determined to have only a horizontal shift from the original image's exposure station and plane. As a result, the stereo-mate synthesized in this paper fulfilled epipolar geometry and yielded easily-perceivable 3D viewing effect together with the original image. The 3D viewing effect was tested with anaglyph at the end.

  • PDF

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

Double Quadrature Spatial Modulation

  • Holoubi, Tasnim;Murtala, Sheriff;Muchena, Nishal;Mohaisen, Manar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.27-33
    • /
    • 2019
  • Quadrature spatial modulation (QSM) utilizes the in-phase and quadrature spatial dimensions to transmit the real and imaginary parts, respectively, of a single signal symbol. Improved QSM (IQSM) builds upon QSM to increase the spectral efficiency by transmitting the real and imaginary parts of two signal symbols using antenna combinations of size of two. In this paper, we propose a double QSM (DQSM) scheme that transmits the real and imaginary parts of two signal symbols independently through any of the transmit antennas. The two signal symbols are drawn from two different constellations of the same size with the first symbol drawn from any of the conventional modulation sets while the second is drawn from an optimally rotated version of the first constellation. The optimum rotation angle is obtained through extensive Monte Carlo simulations to minimize the bit error rate (BER) of the system. Simulation results show that for a given spectral efficiency, DQSM performsrelatively close to IQSM while requiring a smaller number of transmit antennas, and outperformsIQSM by up to 2 dB when the same number of antennas are used.

The Symbolic Meaning of the Imaginary Characters in the Movie "Beautiful Mind" (영화 <뷰티플 마인드> 환상인물의 상징의미)

  • Kim, Seong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.113-122
    • /
    • 2013
  • The movie "Beautiful Mind" directed by Ron Howard is about a genius global mathematician, John Nash's life. In the movie, the main actor, John Nash is a schizophrenic patient who suffers from hallucination and delusion, and his illusion appears as three distinct characters. Each researcher has had a different opinion on the interpretation of these three characters, but many parts of their opinions are losing consistency. Especially the girl is assumed to be a character from the main actor's hallucination because she is ageless or there is no interpretation of the girl. Although the director Ron Howard did not adopt Aldous Huxley's theory "the more you know the more you see" for the movie, he analyzed the characters in the way of his own with thinking that he can analyze them in accordance with the knowledge level of audience. The imaginary characters come out from John Nash's head and who he wants to be. They are the basic human needs, earthly desire, sexual desire and the desire for honor. John Nash minutely reflects these three kinds of desires in an imaginary world through the three characters. This thesis is to newly suggest the symbolic meaning of the imaginary characters in the movie by clearly analyzing the meaning of the controversial three characters.