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8-RANKS OF CLASS GROUPS OF IMAGINARY

QUADRATIC NUMBER FIELDS AND THEIR DENSITIES

Hwanyup Jung and Qin Yue

Abstract. For imaginary quadratic number fields F = Q(
√
εp1 · · · pt−1),

where ε ∈ {−1,−2} and distinct primes pi ≡ 1 mod 4, we give conditions
of 8-ranks of class groups C(F ) of F equal to 1 or 2 provided that 4-ranks
of C(F ) are at most equal to 2. Especially for F = Q(

√
εp1p2), we com-

pute densities of 8-ranks of C(F ) equal to 1 or 2 in all such imaginary

quadratic fields F . The results are stated in terms of congruence relations
of pi modulo 2n, the quartic residue symbol ( p1

p2
)4 and binary quadratic

forms such as p
h+(2p1)/4
2 = x2 − 2p1y2, where h+(2p1) is the narrow

class number of Q(
√
2p1). The results are also very useful for numerical

computations.

1. Introduction

It is a classical topic to study the structure of 2-primary subgroups of the nar-
row class groups C+(F ) for quadratic number fields F ([1, 2, 3, 9, 12, 13, 14]).
Gerth gave a method to compute their densities ([4, 5, 6, 15, 16]). By genus
theory, we have known 2-rank of C+(F ); by Rédei’s matrix, we have got 4-rank
of C+(F ) clearly. In this paper, we always assume that F = Q(

√
εp1 · · · pt−1),

where ε ∈ {−1,−2}, are imaginary quadratic number fields with distinct primes
pi ≡ 1 mod 4. We will mainly obtain conditions for 8-ranks of class groups
C(F ) equal to 1 or 2 provided that 4-ranks of C(F ) are at most equal to 2.
Especially for F = Q(

√
εp1p2), we compute densities of 8-ranks of C(F ) equal

to 1 or 2 in all such fields.
In §2, we describe some well-known facts. We support the degree 4 extension

N+ over K = Q(
√
2p1) with prime p1 ≡ 1 mod 8, in which all finite primes of K

are unramified. We set up relations between the Galois group Gal(N+/K) and
the narrow class group C+(K) of K. We represent general Legendre symbols
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by binary quadratic forms qh+(2p)/4 = x2 − 2py2 and ±p
h+(2p1)/4
2 = 2x2 − p1y

2

over Z, where h+(2p1) is the narrow class number of K. Meanwhile, we give
some quartic reciprocity laws.

In §3, we investigate 8-ranks of class groups C(F ) for imaginary quadratic
fields F = Q(

√
εp1 · · · pt−1), where ε ∈ {−1,−2} and distinct primes pi ≡

1 mod 4. We give the necessary and sufficient conditions for 8-ranks of C(F )
equal to 1 or 2 provided that 4-ranks of C(F ) are at most equal to 2. Their
results are expressed by congruence relations of pi modulo 2n, general Legendre
symbols and quartic residue symbols (p1

p2
)4, (

2p1

p2
)4 (see [10]). These results are

very useful for numerical calculations.
In §4, especially for F = Q(

√
εp1p2), we compute densities for 8-ranks of

C(F ) equal to 1 or 2 in such quadratic number fields (Theorem 4.1).

We use the following notation:

OF ring of integers of a quadratic number field F = Q(
√
d),

C(F ), C+(F ) ideal class group, narrow ideal class group of F ,

h(d), h+(d) class number, narrow class number of F = Q(
√
d),

pa ideal of F over an integer a ∈ Z,
[pa] class of an ideal pa ⊆ OF in C+(F ),

t ideals of F = Q(
√
d) over prime 2,

2A subgroup of elements of order ≤ 2 of an abelian group A,
r2n(A) 2n-rank of A,
RF Rédei’s matrix of F ,
A+ set of primes p ≡ 1 mod 8 represented by x2 + 32y2 over Z,
A− set of primes p ≡ 1 mod 8 not represented by x2 + 32y2 over Z,
B+ set of primes p ≡ 1 mod 8 represented by x2 + 64y2 over Z,
B− set of primes p ≡ 1 mod 8 not represented by x2 + 64y2 over Z,
( p
q
), ( p

q
)4 Legendre symbol, quartic residue symbol.

2. Preliminaries

First, for a prime p1 ≡ 1 mod 8, we find the cyclic extension N+ of degree 4
over K = Q(

√
2p1), in which no finite prime of K ramifies. In terms of norm

from L = Q(
√
2) over Q, p1 = u2

1 − 2w2
1 with u1, w1 ∈ Z and, without loss of

generality, we shall always assume that

π1 = u1 + w1

√
2 ∈ L with u1 ≡ 1 mod 4, w1 ≡ 0 mod 4,

which is called a primary element in L. In fact, w1 is even and we can multiply
u1 + w1

√
2 by the element (1 +

√
2)2 = 3 + 2

√
2 of norm 1, if necessary. By

genus theory, 2-primary subgroup of the narrow class group C+(K) of K is a

cyclic and 4|h+(2p1). Let N+ = Q(
√
2,
√
p1,

√
π1). It is clear that N+ is a

normal extension of degree 8 over Q. Consider the tower of relative quadratic
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extensions:
N+ = Q(

√
2,
√
p1,

√
π1)

|
K1 = Q(

√
2,
√
p1)

|
K = Q(

√
2p1)

|
Q.

Let t and p1 be the prime ideals of K over 2 and p1, respectively. We can verify
that t and p1 are unramified in N+, so all finite primes of K are unramified in
N+ (in details, see [3]). Moreover, if p1 ∈ A+, then u1 ∈ N by [1], so N+ is the
unramified cyclic extension of degree 4 over K.

Let p2 ≡ 1 mod 8 be a prime. Then p2 = u2
2 − 2w2

2 with u2, w2 ∈ Z, and

π2 = u2 + w2

√
2 ∈ L with u2 ≡ 1 mod 4, w2 ≡ 0 mod 4.

Suppose (p1

p2
) = 1, so p2 splits completely in K1. Let p′2 = π2OL = (π2) be a

prime ideal of L over p2 and P2 be a prime ideal of K1 over p′2, i.e., p
′
2|p2 and

P2|p′2. Then OK1/P2
∼= OL/p

′
2
∼= Z/(p2). Hence the general Legendre symbol

([8, p. 196]) ( π1

P2

)
=

(π1

p′2

)
,

which is denoted by (π1

π2
). In fact,(π1

π2

)
= 1 ⇔ x2 ≡ π1 mod π2OL has a solution in OL.

Since OL/p
′
2
∼= Z/(p2) and (p1

p2
) = 1, (π1

π2
) = ( π̄1

π2
), where π̄1 = u1 − w1

√
2 is

the conjugate element of π1. Hence p2 splits completely in L1 = Q(
√
2,
√
π1)

if and only if (π1

π2
) = 1. By the reciprocity law ([8, Theorem 165]), we have

(π1

π2
) = (π2

π1
). Therefore p2 splits completely in N+ if and only if (π1

π2
) = 1. We

have proved:

Lemma 2.1. Let p1 ≡ p2 ≡ 1 mod 8 be primes with (p1

p2
) = 1 and π1, π2 be

defined as above. Then

(i) p2 splits completely in N+ if and only if (π1

π2
) = 1.

(ii) p2 splits completely in K1 but does not in N+ if and only if (π1

π2
) = −1.

In the following, we use the binary quadratic form to describe the value of
(π1

π2
). Let H+(K) be the narrow Hilbert class field of K, which is the maxi-

mal abelian extension over K in which no finite prime of K ramifies. Then
Gal(H+(K)/K) ∼= C+(K) and K ⊂ K1 ⊂ N+ ⊂ H+(K). Especially, if
p1 ∈ A+, then N+ ⊂ H(K), which is the Hilbert class field of K. By re-
striction there is an epimorphism: C+(K) → Gal(N+/K), where Gal(N+/K)
is cyclic of order 4. Hence

C+(K)/C+(K)4 ∼= Gal(N+/K)
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and analogously

C+(K)/C+(K)2 ∼= Gal(K1/K).

Let p be a prime ideal of OK . We have that p splits completely in N+ ⇔
the Artin symbol (N+/K

p ) = 1 ∈ Gal(N+/K) ⇔ [p] ∈ C+(K)4 (see [11, p.

104]). Let p2 be a prime ideal of OK over p2. Then we conclude that p2
splits completely in N+ ⇔ (π1

π2
) = 1 ⇔ [p2] ∈ C+(K)4 ⇔ [p2]

h+(2p1)/4 = 1 ⇔
p
h+(2p1)/4
2 = x2 − 2p1y

2 for some x, y ∈ Z.
Let t and p1 be prime ideals of OK over 2 and p1, respectively. By genus

theory, [t], [p1] and [tp1] are of order at most 2 and only one of them is the unit
in C+(K). Suppose [t] is of order 2. Then we have that p2 splits completely
in K1 but does not in N+ ⇔ (π1

π2
) = −1 ⇔ [p2] ∈ C+(K)2 and [p2] /∈ C+(K)4

⇔ [t][p2]
h+(2p1)/4 = 1 ∈ C+(K) ⇔ p

h+(2p1)/4
2 = 2x2 − p2y

2 for some x, y ∈ Z.
Suppose [t] = 1 and [p1] is of order 2. Then, similarly, we have that (π1

π2
) = −1

⇔ [p1][p2]
h+(2p1)/4 = 1 ∈ C+(K) ⇔ p

h+(2p1)/4
2 = p1x

2 − 2y2 for some x, y ∈ Z.
Hence we have proved:

Lemma 2.2. Let p1 ≡ p2 ≡ 1 mod 8 be primes with (p1

p2
) = 1. Then

(i) (π1

π2
) = 1 if and only if p

h+(2p1)/4
2 = x2 − 2p1y

2 for some x, y ∈ Z.
(ii) (π1

π2
) = −1 if and only if ±p

h+(2p1)/4
2 = 2x2 − p1y

2 for some x, y ∈ Z.

Moreover, for p2 = u2
2 − 2w2

2 ≡ 1 mod 8, we have that (w2

p2
) = 1 = (w2

π2
).

Since p2 = 2(u2 + w2)
2 − (u2 + 2w2)

2 and u2 + w2 ≡ w2(1 −
√
2) mod π2OL,

by [1], we conclude that

p2 ∈ A+ ⇔ u2 > 0, u2 + w2 > 0 ⇔
(u2 + w2

p2

)
=

(1−√
2

π2

)
= 1;

(u2

p2

)
= 1 ⇔

( 2

p2

)
4
= 1 ⇔ p2 ∈ B+.

Now we describe some results about quartic reciprocity law. Let p1 ≡ p2 ≡
1 mod 4 be distinct primes. Then p1 = a21+b21, p2 = a22+b22, b1 ≡ b2 ≡ 0 mod 2,
over Z in terms of norm from L1 = Q(i), where i =

√
−1. We shall always

assume that

λ1 = a1 + ib1, λ2 = a2 + ib2 with a1 + b1 ≡ a2 + b2 ≡ 1 mod 4,

which are called primary elements in L1.
For any α ∈ Z[i] with λ1 ∤ α, there exists a unique integer j (0 ≤ j ≤ 3)

such that

α
N(λ1)−1

4 ≡ ij mod λ1OL1 .

We will define by ( α
λ1
)4 = ij the quartic residue symbol of α modulo λ1. There

is a fact that ( p2

λ1
)4 = 1 if and only if x4 ≡ p2 mod p1 has a solution with x ∈ Z,
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which is denoted by (p2

p1
)4 = 1. There is the law of quartic reciprocity (see [10,

p.123]): (λ1

λ2

)
4
=

(λ2

λ1

)
4
(−1)

(p1−1)(p2−1)
16 .

Lemma 2.3. Let p1 ≡ p2 ≡ 1 mod 4 be distinct primes, p1 = a21 + b21, p2 =
a22 + b22, and λ1 = a1 + ib1, λ2 = a2 + ib2 be primary elements as above.

(i) If (p1

p2
) = 1, then (p1

p2
)4(

p2

p1
)4 = (λ2

λ1
).

(ii) Suppose p1 ≡ p2 ≡ 5 mod 8 and (p1

p2
) = −1. Then(2p1

p2

)
4

(2p2
p1

)
4
= i

p1+p2−2
4

(λ2

λ1

)
,

where we take a1 + b1 ≡ a2 + b2 ≡ 1 mod 8.

Proof. (i) Let p1 = λ1λ̄1 and p2 = λ2λ̄2, where λ̄1 and λ̄2 are the conjugate
elements of λ1 and λ2, respectively. By the quartic reciprocity law, we have
that (p1

p2

)
4

(p2
p1

)
4
=

( p1
λ2

)
4

( p2
λ1

)
4

=
(λ1

λ2

)
4

( λ̄1

λ2

)
4

(λ2

λ1

)
4

( λ̄2

λ1

)
4

=
(λ2

λ1

)2

4

(λ2

λ̄1

)
4

( λ̄2

λ1

)
4
=

(λ2

λ1

)
,

where (λ2

λ̄1
)4(

λ̄2

λ1
)4 = 1.

(ii) Similarly, we have that(2p1
p2

)
4

(2p2
p1

)
4
=

(2p1
λ2

)
4

(2p2
λ1

)
4

=
( 2

λ1λ2

)
4

( p1
λ2

)
4

( p2
λ1

)
4

=
( 2

λ1λ2

)
4

(λ2

λ1

)
.

Since p1 ≡ 5 mod 8 and 2p1 = (a1+ b1)
2+(a1− b1)

2, we assume that a1+ b1 ≡
1 mod 8 and a1 − b1 ≡ 5 mod 8. Similarly, we may assume that a2 + b2 ≡
1 mod 8 and a2 − b2 ≡ 5 mod 8. By [10, p. 136, Ex.37], we have (1+i

λ1
)4 =

i(a1−b1−b21−1)/4. Since 2 = i3(1 + i)2 and ( i
λ1
)4 = i(p−1)/4, we have( 2

λ1

)
4

( 2

λ2

)
4
= i

3(p1−1+p2−1)
4 +

a1−b1−b21−1+a2−b2−b22−1

2 = i
p1+p2−2

4 .

In fact, since a1+b1 ≡ a2+b2 ≡ 1 mod 8, a1−b1−b21−1 = a1+b1−(b1+1)2 ≡
0 mod 8 and a2 − b2 − b22 − 1 = a2 + b2 − (b2 + 1)2 ≡ 0 mod 8. □
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3. Elements of order 8

Let F = Q(
√
D) be a quadratic field and D be the discriminant of F .

The prime discriminant is either p∗ = (−1)(p−1)/2p if p is an odd prime or
p∗ = −4, 8,−8 if p = 2. Then D has the unique decomposition D = p∗1 · · · p∗t
into a product of prime discriminants and pt = 2 if 2|D. By genus theory,
r2(C+(F )) = t− 1.

We will denote by (np ) the Legendre symbol if p is an odd prime and by (n2 )

the Kronecker symbol. If (np ) = (−1)a with a ∈ F2, we shall write (np )
′ = a.

Then the Rédei matrix RF = (aij) of F is the t× t matrix with aij ∈ F2 given
by

aij =

{
(
p∗
i

pj
)′ if i ̸= j,

(
D/p∗

i

pi
)′ if i = j,

for 1 ≤ i, j ≤ t.

Note that the sum of all rows of RF is equal to 0. Let R′
F be the (t − 1) × t

matrix obtained from RF by deleting the t-th row. Then rankR′
F = rankRF ,

where the rank is always meant to the rank over F2.
Let D(F ) be the set of all positive square-free divisors q of the discriminant

D. Then D(F ) is an elementary abelian 2-group with multiplication q1 · q2 =
q1q2/(q1, q2)

2, where (q1, q2) is the greatest common divisor of q1, q2. For q ∈
D(F ), we define Xq = (x1, . . . , xt)

T ∈ Ft
2 by

xi =

{
1 if pi|q,
0 if pi ∤ q,

for 1 ≤ i ≤ t.

Then we have that R
′

FXq = 0 ⇔ ( qp ) = 1 for every odd prime p|(D/q) and

(−D/q
p ) = 1 for every odd prime p|q ⇔ x2 − Dy2 = qz2 is solvable over Z ⇔

q ∈ D(F ) ∩NF/Q(F
∗). Hence,

θ : D(F ) ∩NF/Q(F
∗) → {Xq : R′

FXq = 0}, q 7→ Xq,

is an isomorphism. By genus theory, α : D(F ) ∩NF/Q(F
∗) → 2C(F ) ∩ C(F )2

is surjective and |Ker(α)| = 2. We have the Rédei’s criterion:

r4(C+(F )) = r2(D(F ) ∩NF/Q(F
∗))− 1 = t− 1− rankRF .

We know the method of Rédei’s matrix to determine the solutions of the Dio-
phantine equations qz2 = x2 − Dy2 over Z. For convenience, if it has a non-
trivial solution over Z, then it will be called solvable.

Let F = Q(
√
−d) be an imaginary quadratic field with d = p1 · · · pt−1 and

distinct primes pi ≡ 1 mod 4. Then the narrow class group C+(F ) is just the
class group C(F ) and r2(C(F )) = t − 1 by genus theory. The Rédei’s matrix
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of F is

(3.1) RF =


(
D/p∗

1

p1
)′ · · · (pt−1

p1
)′ ( pt

p1
)′

...
...

...

( p1

pt−1
)′ · · · (

D/p∗
t−1

pt−1
)′ ( pt

pt−1
)′

0 · · · 0 ( pt

p1···pt−1
)′

 =

(
M α
0 ( pt

p1···pt−1
)′

)
,

where pt = 2 and M is equal to the (t− 1)× (t− 1) Rédei’s matrix RE of the

real quadratic field E = Q(
√
d).

Proposition 3.1. Let F = Q(
√
−d) be an imaginary quadratic field with d =

p1 · · · pt−1 and distinct primes pi ≡ 1 mod 4 (t ≥ 3). Let E = Q(
√
d) be a real

quadratic field. Then

(i) r4(C(F )) = 0 if and only if d ≡ 5 mod 8 and r4(C+(E)) = 0.
(ii) r4(C(F )) = r (1 ≤ r ≤ t − 1) if and only if either r4(C+(E)) = r − 1

and q ≡ 1 mod 8 for each q ∈ D(E) or r4(C+(E)) = r and there is
some q ∈ D(E) such that q ≡ 5 mod 8.

Proof. (i) Since pi ≡ 1 mod 4 for 1 ≤ i ≤ t− 1, RE is a symmetric matrix and
rankRE ≤ t − 2. By Rédei’s criterion, r4(C(F )) = 0 ⇔ rankRF = t − 1 ⇔
rankRE = t− 2 and ( 2

p1···pt−1
) = −1 ⇔ r4(C+(E)) = 0 and d ≡ 5 mod 8.

(ii) Suppose r4(C(F )) = r, so rankRF = t− 1− r. Note that the sum of all
row vectors of RF is equal to zero vector. We have that rankRF = t− 1− r if
and only if either rankRE = t− 1− r and the vector α is linearly represented
by column vectors of RE in (3.1) or rankRE = t − 1 − r − 1 and α is not
linearly represented by column vectors of RE . We only need to prove that α
is linearly represented by column vectors of RE if and only if q ≡ 1 mod 8 for
each q ∈ D(E).

If α is linearly represented by column vectors of RE and q = p1 · · · ps ∈ D(E)
(s ≤ t−1), then REXq = 0, where Xq is a vector corresponding with q ∈ D(E).
Hence, since RE is a symmetric matrix, the addition with the first s columns
(rows) of RE is equal to zero vector, so ( 2

p1···ps
) = 1, i.e., q = p1 · · · ps ≡

1 mod 8.
Conversely, since d = p1 · · · pt−1 ∈ D(E), d ≡ 1 mod 8 and ( 2

p1···pt−1
) = 1,

we need prove rank(RE , α) = rankRE . Without loss of generality, we assume
that the first k = t−1−r rows β1, . . . , βk of RE is a maximal subset of linearly
independent of all rows of RE . If, for a row βi (k < i ≤ t− 1) of RE , we have
β1 + · · ·+ βk + βi = 0, then q = p1 · · · pkpi ∈ D(E) and q ≡ 1 mod 8. Let

M ′ =


β1 ( 2

p1
)′

...
...

βk ( 2
pk
)′

βi ( 2
pi
)′

 .
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Then ( 2
p1
)′ + · · ·+ ( 2

pk
)′ + ( 2

pi
)′ = 0 and rankM ′ = k, so the last row of M ′ is

linearly represented by the first k rows of M ′. Hence rank(RE , α) = rankRE

and α is linearly represented by column vectors of RE . □
Write D∗(F ) = D(F ) ∩NF/Q(F

∗) for simplicity.

Remark 3.2. By the process of proving Proposition 3.1, we have that

(i) r4(C(F )) = r4(C+(E)) if and only if D∗(F ) = D∗(E);
(ii) r4(C(F )) = r4(C+(E))+1 if and only if there is some q|p1 · · · pt−1 such

that 2qz2 = x2 + p1 · · · pt−1y
2 is solvable if and only if 2q ∈ D∗(F ).

By Proposition 3.1, we have that r4(C(F )) = 1 if and only if one of the
following conditions holds:

(1) rankRF = rankRE + 1 = t − 2 and D∗(F ) = D∗(E) = {1, q1, q2, d},
where at least one of q1 = p1 · · · pr and q2 = pr+1 · · · pt−1 is congruent
to 5 modulo 8 (1 ≤ r < t− 1);

(2) rankRF = rankRE = t − 2 and p1 · · · pt−1 ≡ 1 mod 8, so D∗(F ) =
{1, 2q1, 2q2, d}, where q1 = p1 · · · pr and q2 = pr+1 · · · pt−1 (0 ≤ r < t−1
and q1 = 1 if r = 0).

Theorem 3.3. Let F = Q(
√
−d), where d = p1 · · · pt−1 with distinct primes

pi ≡ 1 mod 4, be an imaginary quadratic field and r4(C(F )) = 1.

(i) Suppose D∗(F ) = {1, q1, q2, d}, where q1 = p1 · · · pr ≡ 1 mod 8 and
q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then r8(C(F )) = 1 if and only if ( q2q1 )4 =
1.

(ii) Suppose D∗(F ) = {1, q1, q2, d}, where q1 = p1 · · · pr ≡ 5 mod 8 and
q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then r8(C(F )) = 1 if and only if
( q1q2 )4(

q2
q1
)4 = −1.

(iii) Suppose D∗(F ) = {1, 2q1, 2q2, d}, where q1 = p1 · · · pr ≡ 5 mod 8 and
q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then r8(C(F )) = 1 if and only if either
d ≡ 9 mod 16 and ( 2q1q2

)4(
2q2
q1

)4 = −1 or either d ≡ 1 mod 16 and

( 2q1q2
)4(

2q2
q1

)4 = 1.

(iv) Suppose D∗(F ) = {1, 2q1, 2q2, d}, where q1 = p1 · · · pr ≡ 1 mod 8 and
q2 = pr+1 · · · pt−1 ≡ 1 mod 8. Then r8(C(F )) = 1 if and only if either
d ≡ 1 mod 16 and ( 2q1q2

)4(
2q2
q1

)4 = −1 or either d ≡ 9 mod 16 and

( 2q1q2
)4(

2q2
q1

)4 = 1.

Proof. (i) Suppose rankRF = t− 2, D∗(F ) = {1, q1, q2, d} and q1 = p1 · · · pr ≡
1 mod 8, q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then the sum of the first r row vectors
of RF is equal to zero vector. Let q21 = q1OF . Then 1 ̸= [q1] ∈ 2C(F )∩C(F )2.
By Rédei’s criterion, z2 = q1x

2+q2y
2 has a relatively prime solution (x, y, z) =

(a, b, c) over N, so [q1] = [c]2 ∈ C(F )2, where c is an ideal of OF over c.
Since c2 = q1a

2 + q2b
2 and q1 ≡ 1 mod 8, we have that the Jacobi symbols

( b
q1
) = 1 and ( c

q1
) = ( q2q1 )4, where ( q2q1 )4 = ( q2p1

)4 · · · ( q2pr
)4. We conclude that

r8(C(F )) = 1 ⇔ [q1] ∈ C(F )4 ⇔ [c][m] ∈ C(F )2, where m is an ambiguous
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ideal of F over m|2d ⇔ mcz2 = x2 + dy2 is solvable over Z ⇔ the following
system of equations is solvable over F2

R′
FX =

 ( c
p1
)′

...
( c
pt−1

)′


⇔ ( c

q1
) = ( c

p1···pr
) = 1 = ( c

q1
)4 (since rankR′

F = t− 2).

(ii) Suppose rankRF = t − 2, D∗(F ) = {1, q1, q2, d} and q1 = p1 · · · pr ≡
5 mod 8, q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then the sum of the first t − 1 row
vectors of RF is equal to zero and the sum of the first r row vectors of M is
also equal to zero. Let z2 = q1x

2 + q2y
2 have a non-trivial solution (x, y, z) =

(a, b, c) over N. Then, by Rédei’s criterion, r4(C(F )) = 1 and 1 ̸= [q1] =
[c]2 ∈ 2C(F ) ∩ C(F )2, where q21 = q1OF and c is an ideal of F over c. Since
q1 ≡ q2 ≡ 5 mod 8, without loss of generality, c2 = q1a

2 +4q2b
′2, where b = 2b′

and a ≡ b′ ≡ 1 mod 2. Hence the Jacobi symbol ( a
q2
) = 1 = ( b′

q1
) = −( b

q1
).

Since c2 = q1a
2 + q2b

2, we have that ( c
q1
) = ( q2q1 )4(

b
q1
) and ( c

q2
) = ( q1q2 )4(

a
q2
).

Similarly, we conclude that

r8(C(F )) = 1 ⇔ [q1] ∈ C(F )4 ⇔
( c

q1

)
=

( c

q2

)
⇔

(q1
q2

)
4

(q2
q1

)
4
= −1.

(iii) Suppose rankRF = t − 2 and D∗(F ) = {1, 2q1, 2q2, d}, where q1 =
p1 · · · pr ≡ 5 mod 8 and q2 = pr+1 · · · pt−1 ≡ 5 mod 8. Then the sum of the
first t − 1 row vectors of RF is equal to zero vector, i.e., ( 2

p1···pt−1
) = 1. Let

2z2 = q1x
2 + q2y

2 have a non-trivial solution (x, y, z) = (a, b, c) over N, where
a, b, c are all odd. Then 1 ̸= [tq1] = [c]2 ∈ C(F )2, where t2 = 2OF , q

2
1 = q1OF ,

and c is an ideal of F over c. Since 2c2 = q1a
2 + q2b

2, we have that Jacobi
symbols ( 2q2a ) = ( 2q1b ) = 1 and( c

q1

)
=

(2q2
q1

)
4

( b

q1

)
,

( c

q2

)
=

(2q1
q2

)
4

( a

q2

)
.

Since (q1a)
2 + db2 = 2q1c

2 ≡ 10 mod 16, we have that d ≡ 9 mod 16 ⇔ 9a2 +
9b2 ≡ 10 mod 16 ⇔ ab ≡ ±3 mod 8 ⇔ ( 2a ) = −( 2b ) ⇔ ( a

q2
) = −( b

q1
); in

other word, d ≡ 1 mod 16 ⇔ ( a
q2
) = ( b

q1
). We conclude that r8(C(F )) = 1

⇔ [tq1] ∈ C(F )4 ⇔ ( cd ) = 1, i.e., ( c
q1
) = ( c

q2
) ⇔ either d ≡ 9 mod 16 with

( 2q2q1
)4(

2q1
q2

)4 = −1 or d ≡ 1 mod 16 with(2q2
q1

)
4

(2q1
q2

)
4
= 1.

(iv) It is clear from the process of proving (iii). □

Let F = Q(
√
−p1p2) be an imaginary quadratic field with p1 ≡ p2 ≡ 1 mod

4. By Rédei’s criterion, we have that r4(C(F )) = 1 if and only if one of the
following four conditions holds:
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(1) p1 ≡ p2 + 4 ≡ 1 mod 8 and (p1

p2
) = 1;

(2) p1 ≡ p2 ≡ 5 mod 8 and (p1

p2
) = 1;

(3) p1 ≡ p2 ≡ 5 mod 8 and (p1

p2
) = −1;

(4) p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = −1.

By Theorem 3.3 and Lemma 2.3, we have proved:

Corollary 3.4. Let F = Q(
√
−p1p2) be an imaginary quadratic field.

(i) Suppose p1 ≡ 1 mod 8, p2 ≡ 5 mod 8 and (p1

p2
) = 1. Then r8(C(F )) = 1

if and only if (p2

p1
)4 = 1.

(ii) Suppose p1 ≡ p2 ≡ 5 mod 8 and (p1

p2
) = 1. Then r8(C(F )) = 1 if and

only if (p2

p1
)4(

p1

p2
)4 = −1 if and only if (λ1

λ2
) = 1, where λ1 and λ2 are

defined as Lemma 2.3.
(iii) Suppose p1 ≡ p2 ≡ 5 mod 8 and (p1

p2
) = −1. Then r8(C(F )) = 1 if

and only if either p1p2 ≡ 9 mod 16 and ( 2p1

p2
)4(

2p2

p1
)4 = −1 or p1p2 ≡

1 mod 16 and ( 2p1

p2
)4(

2p2

p1
)4 = 1 if and only if (λ1

λ2
) = 1, where λ1 and

λ2 are defined as Lemma 2.3.
(iv) Suppose p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = −1. Then r8(C(F )) = 1 if and

only if either p1, p2 ∈ A+ or p1, p2 ∈ A− if and only if ( 1−
√
2

π1π2
) = 1,

where π1 and π2 are defined as in §2.
Example 3.5. In Corollary 3.4, let F = Q(

√
−p1p2) with distinct primes

p1 ≡ p2 ≡ 1 mod 4. Let C(F )2 denote the 2-primary subgroup of C(F ).

(i) For p1 = 17 and p2 = 13, ( 1713 ) = 1, 34 = 13 + 17 · 4, ( 1317 )4 = 1, so
r8(C(F )) = 1 by Theorem 3.3(i). In fact, C(F )2 ∼= Z/(8) ⊕ Z/(2) by
Pari-GP.

(ii) For p1 = 13 and p2 = 29, ( 1329 ) = 1, 13 = 32 + 22, 29 = 52 + 22,

( 1319 )4(
29
13 )4 = −1 by quartic reciprocity, so r8(C(F )) = 1 by Theo-

rem 3.3(ii). In fact, C(F )2 ∼= Z/(8)⊕ Z/(2) by Pari-GP.
(iii) For p1 = 13 and p2 = 37, ( 3713 ) = −1, p1 · p2 ≡ 1 mod 16, 2 · 37 =

44−14 ·13, 2 ·17 = 114−395 ·37, ( 2·3713 )4 = ( 2·1337 )4 = 1, so r8(C(F )) = 1
by Theorem 3.3(iii). In fact, C(F )2 ∼= Z/(8)⊕ Z/(2) by Pari-GP.

(iv) For p1 = 17 and p2 = 73, p1, p2 ∈ A−, r8(C(F )) = 1 by Theo-
rem 3.3(iv). In fact, C(F )2 ∼= Z/(16)⊕ Z/(2) by Pari-GP.

In Proposition 3.1, we know that r4(C(F )) = 2 if and only if one of the
following conditions holds:

(1) rankRF = rankRE = t − 3 and D(F ) = (q1) × (2q′1) × (d), where
q1 = p1 · · · pr ≡ 1 mod 8 (1 ≤ r < t− 1) and q′1|d.

(2) rankRF = rankRE +1 = t− 3 and D(F ) = D(E) = (q1)× (q2)× (q3),
where q1 = p1 · · · pr, q2 = pr+1 · · · ps and q3 = ps+1 · · · pt−1.

Theorem 3.6. Let F = Q(
√
−d), where d = p1 · · · pt−1 and distinct primes

pi ≡ 1 mod 8, be an imaginary quadratic field. Let rankRF = t − 3 and
D(F ) = (q1)× (2)× (d), where q1 = p1 · · · pr (1 ≤ r < t− 1).
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(i) Let q21 = q1OF . Then [q1] ∈ C(F )4 if and only if ( q1q2 )4 = ( q2q1 )4 = 1.

(ii) Let pi = u2
i − 2w2

i ≡ 1 mod 8 and πi = ui + wi

√
2 for 1 ≤ i ≤ t − 1.

Let π′
1 =

∏r
i=1 πi = u′

1 + w′
1

√
2, π′

2 =
∏t−1

i=r+1 πi = u′
2 + w′

2

√
2 and

t2 = 2OF . Then [t] ∈ C(F )4 if and only if ( 1−
√
2

π′
1

) = ( 1−
√
2

π2
) = (

π′
1

π′
2
) if

and only if either both p1, . . . , pr and pr+1, . . . , pt−1 belonging to A− are

two even numbers and (
π′
1

π′
2
) = 1 or both p1, . . . , pr and pr+1, . . . , pt−1

belonging to A− are two odd numbers and (
π′
1

π′
2
) = −1. Moreover,

r8(C(F )) = 2 if and only if [q1], [t] ∈ C(F )4 if and only if ( q1q2 )4 =

( q2q1 )4 = 1 and ( 1−
√
2

π′
1

) = ( 1−
√
2

π′
2

) = (π1

π′
2
).

Proof. (i) Suppose rankRF = t − 3 and D(F ) = (q1) × (2) × (d), where q1 =
p1 · · · pr (1 ≤ r < t − 1). Then the two sums of both the first r row vectors
and the first t − 1 row vectors of RF are equal to zero. Let z2 = q1x

2 + q2y
2,

q2 = d/q1, have a non-trivial solution (x, y, z) = (a, b, c) over N. Then 1 ̸=
[q1] = [c]2 ∈ C(F )2, where q21 = q1OF and c is an ideal of F over c. Since
c2 = q1a

2 + q2b
2 and q1 ≡ q2 ≡ 1 mod 8, the Jacobi symbols ( a

q2
) = ( b

q1
) = 1

and ( c

q1

)
=

(q2
q1

)
4
,

( c

q2

)
=

(q1
q2

)
4
.

We conclude that [q1] ∈ C(F )4 ⇔ [c][m] ∈ C(F )2, where m is an ambiguous
ideal of F over m|2d ⇔ mcz2 = x2 + dy2 is solvable over Z ⇔ the following
system of equations is solvable over F2

R′
FX =

 ( c
p1
)′

...
( c
pt−1

)′


⇔ ( c

q1
) = ( q2q1 )4 = 1 and ( c

q2
) = ( q1q2 )4 = 1.

(ii) Since q1q2 = NL/Q(π
′
1π

′
2) = u2 − 2w2 = 2(u + w)2 − (u + 2w)2, where

u = u′
1u

′
2 + 2w′

1w
′
2 and w = u′

1w
′
2 + u′

2w
′
1, we have

[t] = [pu+w]
2 ∈ C(F )2,

where pu+w is an ideal of F over u + w. For each pi (1 ≤ i ≤ r), OL/(πi) ∼=
Z/(pi) and (u+w

pi
) = (u+w

πi
). On the other hand,

u+ w = u′
1u

′
2 + 2w′

1w
′
2 + u′

1w
′
2 + u′

2w
′
1

≡ −w′
1u

′
2

√
2 + 2w′

1w
′
2 − w′

1w
′
2

√
2 + u′

2w
′
1

≡ w′
1(1−

√
2)(u′

2 − w′
2

√
2) mod πi,

so (u+ w

pi

)
=

(u+ w

πi

)
=

(w′
1

πi

)(1−√
2

πi

)(π′
2

πi

)
, 1 ≤ i ≤ r.
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Similarly, we get:(u+ w

pj

)
=

(u+ w

πj

)
=

(w′
2

πj

)(1−√
2

πj

)(π′
1

πj

)
, r + 1 ≤ j ≤ t− 1.

Since q1 = u′2
1 − 2w′

1, (
w′

1

q1
) = (

w′
1

π′
1
) = 1, similarly, (

w′
2

q2
) = (

w′
2

π′
2
) = 1. Note

the fact that pi ∈ A+ if and only if (1−
√
2

πi
) = 1. By reciprocity law, we know

that (
π′
1

π′
2
) = (

π′
2

π′
1
). Since rankRF = t − 2 and pi ≡ 1 mod 8, we conclude that

[t] ∈ C(F )4 ⇔ the following system of equations is solvable over F2

R′
FX =

(u+w
p1

)′

...
(u+w
pt−1

)′


⇔ (u+w

q1
) = 1 and (u+w

q2
) = 1 ⇔ either both p1, . . . , pr and pr+1, . . . , pt−1

belonging to A− are two even numbers and (
π′
1

π′
2
) = 1 or both p1, . . . , pr and

pr+1, . . . , pt−1 belonging to A− are two odd numbers and (
π′
1

π′
2
) = −1. □

Let F = Q(
√
−p1p2) be an imaginary quadratic field with p1 ≡ p2 ≡ 1 mod

4. By Rédei’s criterion, we have that r4(C(F )) = 2 if and only if p1 ≡ p2 ≡
1 mod 8 and (p1

p2
) = 1. By Theorem 3.6 and Lemma 2.2, we have proved:

Corollary 3.7. Let F = Q(
√
−p1p2) be an imaginary quadratic field with

primes p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = 1. Let p21 = p1OF and t2 = 2OF . Then

(i) [p1] ∈ C(F )4 if and only if (p1

p2
)4 = (p2

p1
)4 = 1.

(ii) [t] ∈ C(F )4 if and only if (π1

π2
) = ( 1−

√
2

π1
) = ( 1−

√
2

π2
) if and only if

either p1, p2 ∈ A+ and (π1

π2
) = 1, or p1, p2 ∈ A− and (π1

π2
) = −1 if

and only if either p1, p2 ∈ A+ and p
h+(2p1)/4
2 = x2 − 2p1y

2 for some

x, y ∈ Z, or p1, p2 ∈ A− and ±p
h+(2p1)/4
2 = 2x2 − p1y

2 for some
x, y ∈ Z, where π1 and π2 are defined as in §2. Moreover, r8(C(F )) = 2
if and only if [p1], [t] ∈ C(F )4 if and only if (p1

p2
)4 = (p2

p1
)4 = 1 and

(π1

π2
) = ( 1−

√
2

π1
) = ( 1−

√
2

π2
).

We now turn to another imaginary quadratic fields F = Q(
√
−2d) with d =

p1 · · · pt−1 and distinct primes pi ≡ 1 mod 4. We know that r2(C(F )) = t − 1
by genus theory and the Rédei’s matrix RF is a symmetric matrix. We have
that r4(C(F )) = 1 if and only if rankRF = t− 2 and D∗(F ) = {1, q1, 2q2, 2d},
where q1 = p1 · · · pr and q2 = pr+1 · · · pt−1.

Theorem 3.8. Let F = Q(
√
−2d) be an imaginary quadratic field with d =

p1 · · · pt−1 and distinct primes pi ≡ 1 mod 4. Let rankRF = t−2 and D∗(F ) =
{1, q1, 2q2, 2d}.
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(i) Suppose q1 = p1 · · · pr ≡ 1 mod 8, q2 = pr+1 · · · pt−1 and 1 ≤ r < t− 1.
Then r8(C(F )) = 1 if and only if ( 2q2q1

)4 = 1.

(ii) Suppose pi ≡ 1 mod 8 for 1 ≤ i ≤ t−1, that is, q1 = d and q2 = 1. Then
r8(C(F )) = 1 if and only if an even number of the primes p1, . . . , pt−1

belong to B−.

Proof. (i) Suppose rankRF = t− 2 and q1 = p1 · · · pr ∈ D(F ). Then the sum
of the first r row vectors of RF is equal to zero. Let z2 = q1x

2 + 2q2y
2 have a

relatively prime solution (x, y, z) = (a, b, c) over N. Then [q1] = [pc]
2 ∈ C(F )2,

where q21 = q1OF and pc is an ideal of F over c. Since c2 = q1a
2 + 2q2b

2 and
q1 ≡ 1 mod 8, we have that ( b

q1
) = 1 and ( c

q1
) = ( 2q2q1

)4. Similarly, we conclude

that

r8(C(F )) = 1 ⇔ [q1] ∈ C(F )4 ⇔
( c

q1

)
=

(2q2
q1

)
4
= 1.

(ii) Let t2 = 2OF . Then by the process of proving (i), we conclude that
r8(C(F )) = 1 ⇔ [t] ∈ C(F )4 ⇔ ( 2

p1···pt−1
)4 = 1 ⇔ an even number of the

primes p1, . . . , pt−1 belong to B−. □

Let F = Q(
√
−2p1p2) be an imaginary quadratic field with p1 ≡ p2 ≡

1 mod 4. By Rédei’s criterion, we have that r4(C(F )) = 1 if and only if one of
the following conditions holds:

(1) p1 ≡ p2 + 4 ≡ 1 mod 8 and (p1

p2
) = 1;

(2) p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = −1.

By Theorem 3.8, we get:

Corollary 3.9. Let F = Q(
√
−2p1p2) be an imaginary quadratic field.

(i) Suppose p1 ≡ p2 + 4 ≡ 1 mod 8 and (p1

p2
) = 1. Then r8(C(F )) = 1 if

and only if ( 2p2

p1
)4 = 1.

(ii) Suppose p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = −1. Then r8(C(F )) = 1 if and

only if ( 2
p1p2

)4 = 1 if and only if either p1, p2 ∈ B+ or p1, p2 ∈ B−.

Example 3.10. In Corollary 3.9, let F = Q(
√
−2p1p2) with distinct primes

p1 ≡ p2 ≡ 1 mod 4. Let C(F )2 denote the 2-primary subgroup of C(F ).

(i) For p1 = 17 and p2 = 53, ( 5317 ) = ( 2
17 ) = 1, ( 2p2

p1
)4 = ( 2·5317 )4 = ( 4

17 )4 =

1, so r8(C(F )) = 1 by Corollary 3.9(i). In fact, C(F )2 ∼= Z/(16)⊕Z/(2)
by Pari-GP.

(ii) For p1 = 17 and p2 = 97, ( 9717 ) = ( 1217 ) = −1 and 17, 97 ∈ B−, so
r8(C(F )) = 1 by Corollary 3.9(ii). In fact, C(F )2 ∼= Z/(8)⊕ Z/(2) by
Pari-GP.

Let F = Q(
√
−2d) be an imaginary quadratic field with d = p1 · · · pt−1 and

distinct primes pi ≡ 1 mod 8. Then the Rédei’s matrix is

RF =

(
M 0
0 0

)
,
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where the (t − 1) × (t − 1) matrix M is equal to the Rédei’s matrix RE of

E = Q(
√
d). Let pi = u2

i − 2w2
i and πi = ui + wi

√
2 for 1 ≤ i ≤ t− 1.

Theorem 3.11. Let F = Q(
√
−2d) be an imaginary quadratic field with d =

p1 · · · pt−1 and distinct primes pi ≡ 1 mod 8. Suppose rankRF = t− 3, that is,
D(F ) = (2)× (q1)× (2d), where q1 = p1 · · · pr and q2 = pr+1 · · · pt−1. Let q21 =

q1OF , t
2 = 2OF , π

′
1 =

∏r
i=1 πi = u′

1+w′
1

√
2 and π′

2 =
∏t−1

i=r+1 πi = u′
2+w′

2

√
2.

Then we have

(i) [t] ∈ C(F )4 if and only if ( 2
q1
)4 = ( 2

q2
)4 = (

π′
2

π′
1
) if and only if either both

p1, . . . , pr and pr+1, . . . , pt−1 belonging to B− are two even numbers and

(
π′
1

π′
2
) = 1 or both p1, . . . , pr and pr+1, . . . , pt−1 belonging to B− are two

odd numbers and (
π′
1

π′
2
) = −1.

(ii) [q1] ∈ C(F )4 if and only if ( 2q2q1
)4 = ( q1q2 )4(

π′
1

π′
2
) = 1.

Proof. (i) By the assumption, we know that the two sums of both the first
r row vectors and the first t − 1 row vectors of RF are equal to zero. Since
d = q1q2 = u2 − 2w2, where u = u′

1u
′
2 + 2w′

1w
′
2 and w = u′

1w
′
2 + u′

2w
′
1,

2u2 = 4w2 + 2d and [t] = [pu]
2 ∈ C(F )2, where pu is an ideal of F over u.

Similarly, we conclude that

[t] ∈ C(F )4 ⇔
( u

q1

)
=

( u

q2

)
= 1.

On the other hand, for each pi (1 ≤ i ≤ r), OL/(πi) ∼= Z/(pi), u = u′
1u

′
2 +

2w′
1w

′
2 ≡ u′

1(u
′
2−w′

2

√
2) mod (πi) and (

π′
2

πi
) = (

u′
2−w′

2

√
2

πi
) since ( q2pi

) = ( q2πi
) = 1.

Then ( u

pi

)
=

( u

πi

)
=

(u′
1

πi

)(π′
2

πi

)
=

(u′
1

pi

)(π′
2

πi

)
.

Similarly, for each pj (r + 1 ≤ j ≤ t− 1),( u

pj

)
=

( u

πj

)
=

(u′
2

πj

)(π′
1

πj

)
=

(u′
2

pj

)(π′
1

πj

)
.

Since q1 = u′2
1 − 2w′2

1 , we have that (
w′

1

q1
) = 1 and ( 2

q1
)4 = (

u′
1

q1
), similarly,

( 2
q2
)4 = (

u′
2

q2
). By reciprocity law, (

π′
1

π′
2
) = (

π′
2

π′
1
). Hence we conclude that

[t] ∈ C(F )4 ⇔ ( 2
q1
)4 = ( 2

q2
)4 = (

π′
2

π′
1
)⇔ either both p1, . . . , pr and pr+1, . . . , pt−1

belonging to B− are two even numbers and (
π′
1

π′
2
) = 1 or both p1, . . . , pr and

pr+1, . . . , pt−1 belonging to B− are two odd numbers and (
π′
1

π′
2
) = −1.

(ii) Let z2 = q1x
2 + 2q2y

2, where q1 = p1 · · · pr and q2 = d/q1, have a
relatively prime solution (x, y, z) = (a, b, c) over N. Then [q1] = [pc]

2 ∈ C(F )2,
where q21 = q1OF and pc is an ideal of F over c. Since c2 = q1a

2 + 2q2b
2, we
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have that ( b
q1
) = 1 and ( c

q1
) = ( 2q2q1

)4, (
c
q2
) = ( q1q2 )4(

a
q2
). Similarly, we have that

[q1] ∈ C(F )4 ⇔
( c

q1

)
=

( c

q2

)
= 1.

We need to determine the value of the Jacobi symbol ( a
q1
). Let 2u2 = 4w2+2d

and q1c
2 = (q1a)

2 + 2db2. Then 2q1u
2c2 = NF/Q(q1a + b

√
−2d)NF/Q(2w +√

−2d), i.e.,

(3.2) 2q1u
2c2 = 4q21(aw − q2b)

2 + 2d(q1a+ 2bw)2.

We can choose a solution (x, y, z) = (a, b, c) of the equation z2 = q1x
2 + 2q2y

2

such that the greatest common divisor (uc, aw − q2b) = 1. In fact, in F =
Q(

√
−2d), let tp2u = (2w+

√
−2d)OF , where t is the dyadic ideal of F and pu is

an ideal of F over u. Since [q1] ∈ C(F )2, there is an ideal pc of F over positive
integer number c such that [q1][pc]

2 = 1 and pc + p̄c = OF = pu + p̄c, where
p̄c is the conjugate ideal of pc. Hence q1p

2
c = (a+ b

√
−2d)OF and we get such

(x, y, z) = (a, b, c) satisfying (uc, aw − q2b) = 1.

By (3.2), we have the Jacobi symbol (aw−q2b
q2

) = (awq2 ) = 1, i.e., ( a
q2
) = ( w

q2
).

On the other hand,

q1q2 = NL/Q(u
′
1 + w1

√
2)NL/Q(u

′
2 + w′

2

√
2)

= (u′
1u

′
2 + 2w′

1w
′
2)

2 − 2(u′
1w

′
2 + u′

2w
′
1)

2 = u2 − 2w2,

where u = u′
1u

′
2+2w′

1w
′
2 and w = u′

1w
′
2+u′

2w
′
1. For each pj (r+1 ≤ j ≤ t−1),

OL/(πj) ∼= Z/(pj), w = u′
1w2 + u′

2w
′
1 ≡ w′

2(u
′
1 − w1

√
2) mod (πj). Hence(w

pj

)
=

( w

πj

)
=

(w′
2

πj

)(u′
1 − w′

1

√
2

πj

)
=

(w′
2

pj

)(u′
1 − w′

1

√
2

πj

)
.

Since q2 = u′2
2 − 2w′2

2 , the Jacobi symbol (
w′

2

q2
) = 1; by ( q1q2 ) = 1, (

π′
1

π′
2
) =

(
u′
1−w′

1

√
2

π′
2

). Hence ( a
q2
) = ( w

q2
) = (

π′
1

π2
). As a conclusion, we get that

[q1] ∈ C(F )4 ⇔
(2q2
q1

)
4
=

(q1
q2

)
4

(π′
1

π′
2

)
= 1.

□

Let F = Q(
√
−2p1p2) be an imaginary quadratic field with distinct primes

p1 ≡ p2 ≡ 1 mod 4. By Rédei’s criterion, we have that r4(C(F )) = 2 if and
only if p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = 1. By Theorem 3.11 and Lemma 2.2, we

get:

Corollary 3.12. Let F = Q(
√
−2p1p2) be an imaginary quadratic field with

district primes p1 ≡ p2 ≡ 1 mod 8 and (p1

p2
) = 1. Let t2 = 2OF and p21 = p1OF .

Then

(i) [t] ∈ C(F )4 if and only if ( 2
p1
)4 = ( 2

p2
)4 = (π1

π2
) if and only if either

p1, p2 ∈ B+, p
h+(2p1)/4
2 = x2−2p1y

2 over Z or p1, p2 ∈ B−,±p
h+(2p1)/4
2

= 2x2 − p1y
2 over Z.
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(ii) [p1] ∈ C(F )4 if and only if ( 2p2

p1
)4 = (p1

p2
)4 · (π1

π2
) = 1. Moreover,

r8(C(F )) = 2 if and only if (pq )4 = ( qp )4 = ( 2p )4 = ( 2q )4 = (π1

π2
).

Example 3.13. Let F = Q(
√
−2 · 41 · 241), ( 24141 ) = 1. Then C(F )2 ∼= Z/(8)⊕

Z/(8) by Pari-GP. We also verify the condition of Corollary 3.12. It is clear
that 41 = 32 + 32, 41 ∈ A+, 41, 241 ∈ B− and ( 24141 )4 = ( 3641 )4 = ( 2

41 )(
3
41 ) = −1.

In terms of norm from Q(
√
−1), 41 = 52 + 42, 241 = 152 + 42, ( 41

241 )4(
241
41 )4 =

(−1)
41−1

4 ( 15·4−15·4
41 ) = 1 by quartic reciprocity. So ( 41

241 )4 = −1. By 41 =

132 − 2 · 82, 241 = 292 − 2 · 202, let π1 = 13 − 8
√
2 and π2 = 29 − 20

√
2.

Then (π2

π1
) = ( 29·2−40

√
2

13−8
√
2

)( 2
13−8

√
2
) = (−7·2

41 ) = −1. Hence, the 8-rank of C(F )

is equal to 2 by Corollary 3.12.

4. Densities

In the section, we use a Gerth’s method (see [4, 5, 6, 16]) to investigate
the densities of 8-rank of C(F ) equal to 1 or 2 in all quadratic number fields
F = Q(

√
−εp1p2), where ε ∈ {1, 2} and p1 ≡ p2 ≡ 1 mod 4. For a positive real

number x, let

Ax = {p1p2 : distinct primes p1 ≡ p2 ≡ 1 mod 4, p1 < p2 and p1p2 ≤ x},
A1,x = {F = Q(

√
−p1p2) : r4(C(F )) = r8(C(F )) = 1 and p1p2 ∈ Ax},

A2,x = {F = Q(
√
−p1p2) : r4(C(F )) = r8(C(F )) = 2 and p1p2 ∈ Ax},

A3,x = {F = Q(
√

−2p1p2) : r4(C(F )) = r8(C(F )) = 1 and p1p2 ∈ Ax},
A4,x = {F = Q(

√
−2p1p2) : r4(C(F )) = r8(C(F )) = 2 and p1p2 ∈ Ax}.

We define densities di (1 ≤ i ≤ 4) as follows:

(4.1) di = lim
x→∞

|Ai,x|
|Ax|

.

Theorem 4.1. Let d1, d2, d3 and d4 be defined as (4.1). Then

d1 =
5

16
, d2 =

1

128
, d3 =

3

16
, d4 =

1

128
.

Proof. We know that, by ([7, Theorem 437]) and p1 ≡ p2 ≡ 1 mod 4, p1 < p2,

|Ax| =
∑

p1p2∈Ax

1 =
x log log x

4 log x
+ o

(x log log x
log x

)
.

Let F = Q(
√
−p1p2) ∈ A1,x. Then by Corollary 3.4, we have that r4(C(F )) =

r8(C(F )) = 1 if and only if one of the following five conditions holds:

(1) p1 ≡ p2 + 4 ≡ 1 mod 8, (p2

p1
) = 1 and (p2

p1
)4 = 1;

(2) p1 + 4 ≡ p2 ≡ 1 mod 8, (p2

p1
) = 1 and (p1

p2
)4 = 1;

(3) p1 ≡ p2 ≡ 5 mod 8, (p2

p1
) = 1 and (λ2

λ1
) = 1, where λ1, λ2 are defined as

Lemma 2.3;
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(4) p1 ≡ p2 ≡ 5 mod 8, (p2

p1
) = −1 and (λ2

λ1
) = 1, where λ1, λ2 are defined

as Lemma 2.3;

(5) p1 ≡ p2 ≡ 1 mod 8, (p2

p1
) = −1 and ( 1−

√
2

π1π2
) = 1, where π1, π2 are

defined as §2.
Hence

|A1,x(F )| =
∑

p1p2∈Ax
p1≡p2+4≡1 mod 8

1

4

(
1 +

(p2
p1

))(
1 +

(p2
p1

)
4

)

+
∑

p1p2∈Ax
p1+4≡p2≡1 mod 8

1

4

(
1 +

(p2
p1

))(
1 +

(p1
p2

)
4

)

+
∑

p1p2∈Ax
p1≡p2≡5 mod 8

1

4

(
1 +

(p2
p1

))(
1 +

(λ2

λ1

))

+
∑

p1p2∈Ax
p1≡p2≡5 mod 8

1

4

(
1−

(p2
p1

))(
1 +

(λ2

λ1

))

+
∑

p1p2∈Ax
p1≡p2≡1 mod 8

1

4

(
1−

(p2
p1

))(
1 +

(1−√
2

π1π2

))

=
∑

pq∈Ax

( 1

16
+

1

16
+

1

16
+

1

16
+

1

16

)
+ o

(x log log x
log x

)
=

5

64
· x log log x

log x
+ o

(x log log x
log x

)
.

An intuitive explanation of the formula might proceed as follows. In the second
equation, a factor of 1

4 is introduced by each congruence relation of p1, p2 mod 8.
This is considered in detail in [4, 6].

For the sake of completeness, we give a sketch of proof.∑
p1p2∈Ax

p1≡p2+4≡1 mod 8

1

4

(
1 +

(p2
p1

))(
1 +

(p2
p1

)
4

)

=
1

16

∑
p1p2∈Ax

1 +O

 ∑
p1p2∈Ax

p1≡p2+4≡1 mod 8

(
χ1(p2) + χ2(p2) + χ3(p2)

)
=

x log log x

64 log x
+ o

(x log log x
log x

)
,

where χ1(p2) = (p2

p1
), χ2(p2) = (p2

p1
)4, χ3(p3) = (p2

p1
)4(

p2

p1
) are Dirichlet charac-

ters modulo p1. By [6, Theorem 2], we have that∑
χi(p2) = o

(x log log x
log x

)
for i = 1, 2, 3.
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Similarly, we have above character sum estimate for the product of characters:

(p2

p1
), (p2

p1
)4, (

λ2

λ1
), ( 1−

√
2

π1π2
).

Hence

d1 = lim
x→∞

|A1,x|
|Ax|

=
5

16
.

Let F = Q(
√
−p1p2) ∈ A2,x. Then, by Corollary 3.7, we have that r4(C(F ))

= r8(C(F )) = 2 if and only if p1 ≡ p2 ≡ 1 mod 8, (p1

p2
)4 = (p2

p1
)4 = 1 and

(π1

π2
) = ( 1−

√
2

π1
) = ( 1−

√
2

π2
). Hence

|A2,x(F )| =
∑

p1p2∈Ax
p1≡p2≡1 mod 8

1

32

(
1 +

(p2
p1

))(
1 +

(p2
p1

)
4

)(
1 +

(p1
p2

)
4

)

×
(
1 +

(π1(1−
√
2)

π2

))(
1 +

(1−√
2

π1π2

))
=

∑
p1p2∈Ax

p1≡p2≡1 mod 8

1

32
+ o

(x log log x
log x

)

=
x log log x

512 log x
+ o

(x log log x
log x

)
.

Thus

d2 = lim
x→∞

|A2,x|
|Ax|

=
1

128
.

Let F = Q(
√
−2p1p2) ∈ A3,x. Then, by Corollary 3.9, we have that

r4(C(F )) = r8(C(F )) = 1 if and only if one of the following three conditions
holds:

(1) p1 ≡ p2 + 4 ≡ 1 mod 8, (p1

p2
) = 1 and ( 2p2

p1
)4 = 1;

(2) p2 ≡ p1 + 4 ≡ 1 mod 8, (p1

p2
) = 1 and ( 2p1

p2
)4 = 1;

(3) p1 ≡ p2 ≡ 1 mod 8, (p1

p2
) = −1 and ( 2

p1p2
)4 = 1.

Hence

|A3,x| =
∑

p1p2∈Ax
p1≡p2+4≡1 mod 8

1

4

(
1 +

(p2
p1

))(
1 +

(2p2
p1

)
4

)

+
∑

p1p2∈Ax
p2≡p1+4≡1 mod 8

1

4

(
1 +

(p1
p2

))(
1 +

(2p1
p2

)
4

)

+
∑

p1p2∈Ax
p1≡p2≡1 mod 8

1

4

(
1−

(p1
p2

))(
1 +

( 2

p1p2

)
4

)

=
∑

p1p2∈Ax

( 1

16
+

1

16
+

1

16

)
+ o

(x log log x
log x

)
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=
3

64
· x log log x

log x
+ o

(x log log x
log x

)
.

Hence

d3 = lim
x→∞

|A3,x|
|Ax|

=
3

16
.

Let F = Q(
√
−2p1p2) ∈ A4,x. Then by Corollary 3.12, we have that

r4(C(F )) = r8(C(F )) = 2 if and only if p1 ≡ p2 ≡ 1 mod 8, (p1

p2
)4 = (p2

p1
)4 =

( 2
p1
)4 = ( 2

p2
)4 = (π1

π2
). Hence

|A4,x| =
∑

p1p2∈Ax
p1≡p2≡1 mod 8

1

32

(
1 +

(p1
p2

))(
1 +

(2p1
p2

)
4

)(
1 +

(2p2
p1

)
4

)

×
(
1 +

( 2

p1p2

)
4

)(
1 +

( 2

p1

)
4

(π1

π2

))
=

1

512
· x log log x

log x
+ o

(x log log x
log x

)
.

Hence

d4 = lim
x→∞

|A4,x|
|Ax|

=
1

128
. □
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