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ORIENTED 5-DIMENSIONAL SUBMANIFOLDS
IN THE PURELY IMAGINARY OCTONIANS

HIDEYA HASHIMOTO

1. Introduction

In this note, we shall consider the gometry of the base space ImO
with the structure group G2, where Im O is the purely imaginary oc-
tonians and G2 is the automorphism group of the octonians. By the
algebraic properties of Im O, we see that any oriented 5-dimensional
submanifold (M®, ¥) in Im O has the induced almost contact metric
structure, that is, the structure group of the tangent bundle is reducible
to U(n) x 1 (see [1]). In 2, we shall recall the structure equations of
the group G2 established by Bryant ([2]). In 3, we write the induced
structure equations of (M?>,¥) in Im O derived from these equations.
In 4, we shall give the conditions for the induced almost contact struc-
ture to be normal. In 5, we determined the quasi-Sasakian (M3, ¥)
and nearly cosymplectic submanifold (M°,¥) in Im O. These results
are improve slightly one of the work of Kenmotsu ([5]). In 6, we give
the relations between the Gauss map and the almost contact metric
structure. Lastly, we shall observe the condition that induced almost
contact structure to be contact. As an application, we shall show
that there does not exist contact structure for the special submanifold
(M5, 9).

In this paper, we adopt the same notational convention as in [2] and
all the manifolds are assumed to be connected and of class C™ unless
otherwise stated. Throughout this article, we denoted by (M®, ¥) and
oriented 5-dimensional submanifold in Im O. The author would like to
express his hearty thanks to Professor K. Sekigawa and Professor N.
Innami for their encougagements and many valuable suggestions.

Received March 13, 1990.

167



168 Hideya Hashimoto

2. Preliminaries
2.1. We denote by M) 4(C) the set of p x ¢ complex matrices and
[a] € M343(C) is given by

0 as —az
[a]=] —as O a;
ag -—qag 0

where a = *(a1,a2,a3) € M3x1(C). Then, we have
(2.1) [a]b+ [bla =0

where a,b € M3x1(C). We denote by O the octonians and <, > the
canonical inner product of O ([2],[3]). For any = € O, we denoted by
T the conjugate of z. We remark that the octonians may be regarded
as the direct sum H @ H where H is the quaternious.

2.2. Now, we shall recall the structure equations of (ImO,G3)
which is estabhshed by R. Bryant ([2]). We set a basis of C®r Im O by;
S,El—lN Ez—]N Es—kN EI—ZN Ez—]N E3 kNwhere
e=(0,1) e HQH, N = (1- \/—e)/2 N =(1++v/-1)/2 € C®rO and
{1,1,3,k} is the canonical basis of H. A basis (u, f, f) of C @ Im O
is said to be admissible, if there exists ¢ € G2 C M747(C) so that
(u, f,?) = (¢,E,E)g. We shall identify the element of G, with the
corresponding admissible basis. Then, we have

PROPOSITION 2.1 ([2], PROPOSITION 2.3.). There exists left invari-
ant 1-forms «,8 on G2;8 with values in M3x;(C) and & = (x}), 1 <
1,7 < 3, with values in 3 x 3 skew Hermitian matrices which satisfies
tre =0,

_ _ 0 —V=-1'8 /1%
(2.2) d(u, f, ) = (v £, f) (—2\/——1_6' K (61 )
2v/~-16 [6] %

=(u, f, F)$.
Then, ¢ satisfies dp = —¢ A ¢, or equivalently,
(2.3) do = -k AO+[0] NG,
(2.4) de = -k AK+ 30N -0 NOI;.
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Let 7 = ImO x G2 and z : F — Im O denote the projection onto
the first factor. We regareded F as the space of pairs (y;(u,f, f))
consisting of a base point y € Im O and admissible basis at that point.
Then, we have

PROPOSITION 2.2. There exists the dual basis (,w,@) of (4, f, f)
on F so that

- [ -
(25) de =, £F) (g) = (u, £,
W
Then, v satisfies
(2.6) dip = —p A,

2.3. Let G(2,Im O) denote the Grassmannian manifold of oriented
2-planes in Im O. We define the map 7 : G2 — G(2,Im O) by 7j(g) =
—2v—-1fi A f,. By (2.2), we have

(27)  dij = (=2vV=D{u A F1(=2/=18") + fi Au(2/-18")

3
- T -3
+ D> (finfiki+ ANTRD) = Ta A F16° — fi A f28
i=2
+FsAT102+ i A S8}

Hence, we have

( 0 0 0 )
K 0 0
0 0 3 &2 0
ker dij = ¢ 0 w3 &3 €Gy
0 0
0 0 0 w2 =2
\ 0 'Eg K§ J
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So, the orthogonal complement H of ker d7 is giver by

( ( 0 —/-10 Vv-18 \ )

0 Kl k}
—2v/=18 «? 0 6]
H =1 K3 €G2 .
0 % ®

2y/-16 [6] [
—3

\ \ Ky 0 } J

Thus, we have G; = H @ ker d7j. From the above observations, we may

observe that

PROPOSITION 2.3.

6(2,Im0) = G2 /U (2).

3. The induced almost contact structure and structure
equations on (M°, ¥)

Let &1,& be mutually orthogonal unit normal vector fields on a
neighborhood of p € M5. The vector field u, 1-form 7 and (1.1) tensor
field ¢ are defined by u = & x &, n(X) = (z,u) and pX = X x u for
any X € X(M?®), respectively, where x is the exterior product of O
which is defined by z X y = (gz — Ty)/2 for any z,y € O. We noted
that & x £ is depend on the orientation of M® in Im O, so u is a global
vector field on M®. Then, (p,u,n, < , >) is the almost contact metric
structure. In fact, for any X € X(M?®), we get

X =(Xxu)xu
={(X—<X,u>ut+<X,u>u)xu} xu
={a(X- < X,u>u)} xu.

On one hand, we have
<u(X- < X,u>u)u>=0.
From these, we get

P’X =X - <X,u> )} = @ (X- <X,u>u) = X +n(X)u.
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We get, also

<eX,0oY > =< X xu,Y xu>
=< X-<X,u>u),w(Y-<Y,u>u)>
=<X—-n(X)u, Y —n(Y)u >
=< X,Y > —n(X)n(Y).

Next, we shall give the structure equations of (M 5, ¥). We set Fy(M®)
={(p;(u, /D -2vV-1firnf, = TPJ*MS}. From Fact 2.3, there exists
g € Gz such that —2/=1fi A f, = Tp"'M5. By [2: p.194. (1.31)], we
get

‘P(fa) = fo Xu= g(Ea) X 9(5) = Xg(Ea X 5) =+v~-1 Xy(Ea)
= V-1x4(Ea x 1) = V-1g(Ea) x g(1) = V-1 fa-
By the definition of ¢, we get ¢(u) = u x u = 0. From these facts, we
get

PROPOSITION 3.1. P : Fy(M®) — M?® is the U(2) principal right
bundle over M5 with the natural projection P.

We call P : Fy(M®) — M3 the adapted frame bundle of M°. By
proposition 3.1, we have the following commutative diagram.

Fu(M®) ——L F
U(2)J> J'G'z
ms

— O

where ¥ is the natural inclusion. Then, from (2.2) and (2.6), we have
the following structure equations on M°>:

(3.1) w'=m'=0 on f\p(Ms),

3
(3.2) dx =u®n+Z{fi®wi +fi @'},

i=2
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(3.3) du =) {foa(—2V=16%) + Fo(2V/~16)},

oa=1

(Gauss formula)

3
(3.4) dfr =u(—VT8)+ Y farg — Fsb" +F16°,

a=1
-3 3 —_ —
(3.5) dfs =uw(—V=10)+ Y | far§ — F16% + F,6",
a=1
-1 3 - —
(3.6) dfi =u(—V=10 )+ Y far§ — F20° + 36",
a=1
(Weingarten formula)
3
(3.7) dw? =2/10* A -3 K2 Aw' =T AT,
=2
3 -
(3.8) do® =2/=16* Ap =) K A’ +6 AT,
i=2

(3.9) dn = vV=1) (F Aw' — 6 ATY),

i=2

(3.10) @ =—(vV=1/2) ) _(«' AT'),

i=2
where &(X,Y) =< X,9Y > for any X,Y € X(M®°). By (3.1), we
get dw' = 0. From (2.6) and Cartan’s lemma, there exist a € C,
bvc € M2x1(c)7 Aa B7C € M2x2(C) Sa'tiSfying

tA=4, ‘C=C,

6! a b ¢
(3.11) (c) = (—2\/—_1% A B) (Z) ,
) 2/-1'¢ C 'B) \§

where ¢ = ¥(x},£3), © = 1(6*,—6?) and p = '(w?,&*). By (3.11), the
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second fundamental from I7 is given by

IT = —2Re{(2vV=1n08' —'uo ¢ —'uo8)fi)
= —2Re{[2v/—1n o (an + by + ¢fi)
—tpo(-2v~1't + Ap + BE)
— ‘o (—2v-1'en+ CE + 'Bu)lf1}
Hence, we have the following canonical splitting:

I = (Yo Ap)fi,
e — —(t/,z o BE + *fio*By)fi,
II(0'2) = -—(‘ﬂ Obﬁ)fl'

The mean curvature §) is given by

(3.13) $ = —(4/5)Re{(v/-1a - 2trB) f1}.

4. Normal almost contact submanifold (M®, ¥)

Let D (resp. D+) be the contact distribution which is defined by
D(p) = {X € T,M?|5(X) = 0} (xesp. D+ (p) = {X € C®r
D(p)l¢X = £/-1X}).

THEOREM 4.1. The induced almost contact metric structure of
(M3, V) is normal, if and only if

(1) D+ are involutive distributions,

(2) Each integral curve of u is a line in ImV,

(3) 11V =0, rank I1*? < 1,

(4) M?® is a minimal submanifold.

Proof. The induced almost contact metric structure is normal if and
only if

(41) P((Vxe)Y) = (Vexe)Y) — (Vxn)Y)u =0
for any X,Y € X(M5). Any vector field Y on M?® is given by

(4.2) Y=uY’+) (Y +FY).

=2
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On one hand, by (3.3) ~ (3.5), we get

(4.3)

Vixu = 3 {f(-2VTI6(X) + T2V 1 (X)),

=2

Vxfo = u(—V18 (X)) + 3 firh(X) — F26'(X),

i=2

Vxfs = u(—vV=18 (X)) + Y fih(X) +F,0'(X),

=2

By (4.1) ~ (4.3), we get

(4.4)

(Vx¢)¥ = Vx(e¥) - o(VxY)

=Vx{V-1) (Y + 1Y)}

=2

—p{Vx @Y’ + ) (Y +FY))}

=2

=u ) ((X)Y' +6(X)Y)

=2

3
— 2 (6 (X) + TF O

=2

— V=18 (XY — F,64(X)Y)
+2V/71(f30 (X)T" — F,04(X)Y2).

From (4.2) and (4.3), we get

(4.5)

(Vxn)Y = V1Y {F(X)Y - 6(X)T').

=2
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By (4.1), (4.4) and (4.5), we get

3
(46) = —2VTIS(S6(X) + FB (X))

=2
+2(f28 (X)Y° + T8/ (X)Y?)
—2(f0 (X)Y +F364(X)Y?)

—{u)_(F(pX)V + 8 (pX)YY)

=2

3
-2 (fi'(#X) + [ (pX)Y"

—2VT1(f28 (pX )T — F,60' (9X)Y?)
+2VTI(fi0 (pX)Y — F36' (pX)Y?)}

—u/=1)_{f(X)Y - 6'(X)Y'}.

=
By (4.6), we get

(4.7) 8'(pX) = —V/=10'(X), 6'(pX)=V-16'(X)
for any i = 2,3. By (4.7), we get

(4.8) 6%(u) = 6'(f;) = 6(F;) = 0,

for any a = 1,2,3 and ¢, = 2,3. By (2.15) and (4.8), we get

(6)-( 22) G
(4.9) Cl=(0 4 0)lu].
2} 0o c o/ \z

By (4.9), we have (4). Since, §' = 0, by (2.3), we get

(4.10) kAN — kLA —20° AT =0
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By (4.9) and (4.10), we have (3). From (3.7-), (3.8) and (4.9), we get
d? =dw® =0 mod (w?w?).
Thus, we have (1). By (3.3) and (4.9), we get
du=0 mod (v°, @)
Thus, we obtain (2).

5. Quasi-Sasakian (M®, ¥) and nearly cosymplectic (M®, ¥)
In this section, we shall prove the following:

THEOREM 5.1. The induced almost contact submanifold (M®,¥)
is quasi-Sasakian manifold (i.e., normal and d® = 0) if and only if

(1) u is a constant vector field on M°,

(2) IT?° = IT%' =0 on M?,

(3) ¥(M?) is locally isometric to N* x R where N* is a complex
hypersurface in C* = ((spang{u})*, Ju)-

Proof. By (4.9), we get

3 -
(5.1) dd ==Y [0° &'+ Aw]An=0.

=2

By (4.9) and (5.1), we get C = 0. Hence, we have II%° = 0. From this
and (4.9), we get

(5.2) 6% =0,
for @ = 1,2,3 on M. By (3.3), (3.9), (4.4) and (5.2), we get
du=dnp=(Vxp)Y =0

for any X,Y € X(M?). Thus, we get the desired conclusion.
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THEOREM 5.2. If the induced contact submanifold (M®, ¥) is nearly
cosymplectic manifold (i.e., (Vx¢)X = 0 for any X € X(M?%)), then
V¥ is totally umbilic.

Proof. For any X € X(M?), we get
3 .
(5.3) (Vxe)X =u) (8(X) X' +6(X)X*)
=2

- 2{)_(fi6'(X) + F.6'(X)}1X°

=2
~2VT1(f28 (X)X - Fo6'(X)X?)
+2V71(f0 (X)X - F361(X)X?),

where X = uX® + Z?=2{f,-X" + f;X'}. By (5.3), we get

6'(u) = 6'(f) = 6'(f;) = 6'(f:) = 0,

5.4 = 7
(5:4) 0 (Fa) = ~6*(F2) = -V=16"(w),

By (5.4), we get

01 a O 0 n
(5.5) (c):(o A —\/_—_laIz) (,1)
6 0 0 +-1ahL I

By (5.5), the mean curvature §) is given by

(5.6) $ = —4Re{(vV-1a)f1}:
By (2.3), (3.9) and (5.5), we get

3
(5.7) o' = =) kL n6*—20* N6°

a=1

=d(an) =daAn+vV—-1a('0 A p—'0 A7)
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By (5.5) and (5.7), we get

da A+ &)} Aag =0,

5.8 —
(58) V-1a("0Ap—"ONE) ="0N( —20° NG°.

If we put F = ((1) _01), then we get
(5.9) 6 = v—1aF7f.
By (5.8); and (5.9), we get
(5.10) \/—_la{\/——l?ituF A p——1a'GF AT}
= (—V-1a"EF) A (Ap — V=1aE) — 2(—vV=Ta@*) A (V-Taw?).
We take the (1,1)-part of (5.10), (Since the form 7 is a contact form,

a # 0 (see 7, Proposition 7.1)), we get A = 0. Hence, by (5.5) and
(5.6), the second fundamental form is given by

II = —4Re{/—Tla(pon+ipom)fi} =g®H.

By the structure equations, we have

 PROPOSITION 5.3. The induced almost contact metric structure is
not associated one (i.e., 2® # dn).

Proof. f 2® = dn, then we have
3 - - - -
(5.11) —VTuAE=V=T1) (F Aw’ -6 ADY)
=2
By (3.11) and (5.11), we get

(5.12) ¢=0,'uBAFu=0, 'uAfai="aCAFu—"uC A F,

_ (0 -1 (k1 5
WhereF'—(1 0).IfweputC—(1 m),then,by(f).l_:)g,we

have 1+ 1 =1 = —1. This is a contradiction.
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COROLLARY 5.4. The induced almost contact submanifold in ImV
is not Sasakian manifold.

6. The relation of the Gauss map

THEOREM 6.1. Let g : M® — G(2,ImV) = G5 /U(2) be the Gauss
map and J the canonical complex structure on G(2, Im V).

(1) If the Gauss map g is p-holomorphic (i.e., dgop = J odg), then
M? is a quasi-Sasakian manifold.

(2) If the Gauss map g is anti~p-holomorphic (i.e., dgoyp = —Jodg),
then M® is a normal almost contact manifold and IT*° = IT"! = 0.

Proof. The (1,0) part of the canonical almost complex structure of
G(2,Im V) is given by spann{ﬁf,ﬁi‘,ﬁl,52,§3}. By (2.7), we get

(61)  dg=(-2V=D{uAFi(-2v=16")+}_firAfir;

—f2NF16° + fa N F167)

+ (2V-1D){fi Au(2V=168") + Z fi A TR

=2
-fin fzb{‘ + fiA fsgz}'

Case (1). g is p-holomorphic if and only if
(6.2) dg(u) =0 and (dg(f;))*V =0.
By (6.2), we get
i i 51 i i
(6.3) 6 (u) = ki(u) = 6'(u) =6 (f;) = 6(f;) = £1(f;) = 0,
for any i,j = 2,3. By (3.11) and (6.3), we get II®? = 1D = 0.

By Theorem 5.1, we get desired result. Similarly, in case (2), we get
the conclusion.
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7. On the contact manifolds

By the direct calculation, we get the following;:
PROPOSITION 7.1. 5 A(dn)? = —2{2 Re(det C) + ||C||% — ||tr B||*}.

COROLLARY 7.2. Let (M®,¥) be the normal almost contact mani-
fold with n A (dp)? = 0. Then, it is a quasi-Sasakian manifold.

Next, we shall consider the relation between the induced contact
structure and the product immersion. Let fe x g : M® x N2 > He @
ImH & ImV be the product immersion where f : M® — H and
g : N2> - ImH are oriented hypersurfaces, and ¢ = (0,1) € ImV.
We denote by &1 (resp. &) the unit normal vector field of M3 in H
(resp. N? in ImH). Then, we have £(q) x &i(p)e € T,M? for any
(p,q) € M3 x N2. In fact, we get

(7.1) &2(g) x &1(p)e = (&1(p)€2(9))e-

On one hand, {(&1(p)i)e, (&1(p)f)e, (€1(p)k)e} is an orthonormal basis
of T, M?® where {1,1,4,k} is the canonical basis of H. Hence, by (7.1),
we get

(72)  &(9) x &ulp)e = (€2(a), ) (&a(p)i)e
+(€2(9), N &u(p))e + (La(), B)(Ex(PIR)e.

We put u1 = (€2(q), ), pz = (€2(g),5), p3 = (€2(), k). Let ', w?, w?
be the dual 1-forms on M3 of the basis &1, £17, €1k, respectively. Then,
by (7.2), the forms 7, dn is represented by

3
n=) Haw

(7.3) "’j‘ \ .
dn = {) dpale)v AW} + ) prad®,
T a=1 =1 a=1

where {e1, e} is the orthonormal frame of T,N? and {v;,1,} is the
dual 1-forms of {e1,e2} on N2. Since, dw® = 227:1 /\g_ywﬂ Aw?, we
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get

(7.4) nA(dn)?

151 H2 Hs
= —2|dus(er) dua(er) dus(er) | A2 Aw! Aw? AW,

dui(ez) duz(ez) dps(ez)

If we take {e;, ez} the principal vector of the shape operator Ag,, then
(7.4) implies
n A (d?'])z = —2K01 A g2,

where K is the Gauss curvature of N? and oy (resp. 03) is the volume
element of N2 (resp. M?). Hence, we get the following;

THEOREM 7.3. Let fe x g : M® x N* - He @ ImH = ImV be
the product immersion where f : M> — H and g : N* — ImH are
oriented hypersurfaces, and € = (0,1) € ImV. Then, we have

n A(dp)? = —2K,

where K is the Gauss curvature of N? and o is the volume element of
M3 x N2,

From this, we see that there exists many contact submanifolds (M3 x
N2, fe x g) in Im V. However, we have

COROLLARY 7.4. If N? is diffeomorphic to the torus and M? is
compact, the induced almost contact structure is not a contact.

Proof. By Theorem 7.3 and Gauss-Bonnet Theorem, we get

/ n A (dn)? = —2/ Ko = —4nX(N?)vol(M?),
M3x N2 M3xN

where X(N?) is the Euler number of N2. Since N? is diffeomorphic to

torus, we have
/ n A (dn)’ = 0.
M3x N2

Hence, there exists a point m € M3 x N? such that 5 A (dn)?(m) = 0.

REMARK. Corollary 7.5 is a partial negative answer to Blair’s prob-
lem in ([1; page 71}).
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