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ORIENTED 5-DIMENSIONAL SUBMANIFOLDS

IN THE PURELY IMAGINARY OCTONIANS

HIDEYA HASHIMOTO

1. Introduction

In this note, we shall consider the gometry of the base space Im 0
with the structure group G2, where Im 0 is the purely imaginary oc
tonians and G2 is the automorphism group of the octonians. By the
algebraic properties of Im 0, we see that any oriented 5-dimensional
submanifold (MS, w) in Im 0 has the induced almost contact metric
structure, that is, the structure group of the tangent bundle is reducible
to U(n) x 1 (see [1]). In 2, we shall recall the structure equations of
the group G2 established by Bryant ([2]). In 3, we write the induced
structure equations of (MS, '11) in Im 0 derived from these equations.
In 4, we shall give the conditions for the induced almost contact struc
ture to be normal. In 5, we determined the quasi-Sasakian (MS, '11)
and nearly cosymplectic submanifold (MS, '11) in Im O. These results
are improve slightly one of the work of Kenmotsu ([5]). In 6, we give
the relations between the Gauss map and the almost contact metric
structure. Lastly, we shall observe the condition that induced almost
contact structure to be contact. As an application, we shall show
that there does not exist contact structure for the special submanifold
(~,w).

In this paper, we adopt the same notational convention as in (2) and
all the manifolds are assumed to be connected and of class Coo unleSs
otherwise stated. Throughout this article, we denoted by (MS, '11) and
oriented 5-dimensional submanifold in Im O. The author would like to
express his hearty thanks to Professor K. Sekigawa and Professor N.
Innami for their encougagements and many valuable suggestions.
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2. Preliminaries
2.1. We denote by Mpxq(C) the set of p X q complex matrices and

[a] E Maxa(C) is given by

(2.1) [a]b + [b]a = °
where a, bE Maxl(C). We denote by 0 the octonians and < , > the
canonical inner product of 0 ([2],[3]). For any x E 0, we denoted by
x the conjugate of x. We remark that the octonians may be regarded
as the direct sum H EB H where H is the quaternious.

2.2. Now, we shall recall the structure equations of (ImO,G2 )

which is established by R. Bryant ([2]). We set a basis of C®a1m 0 by;
c:, El = iN, E 2 =jN, Ea = kN, El = iN, E 2 =jN, Ea = kN where
c: = (0,1) E HEBH, N = (1-Ac:)/2, N = (1+A)/2 E C0RO and
{l,i,j,k} is the canonical basis of H. A basis (u,I,]) of C 0RImO
is said to be admissible, if there exists 9 E G2 C M7x7 (C) so that
(u,J,]) = (c:,E,E)g. We shall identify the element of G2 with the
corresponding admissible basis. Then, we have

PROPOSITION 2.1 ([2], PROPOSITION 2.3.). There exists left invari
ant l-fozms /l,,0 on G2;() with values in Maxl(C) and /l, = (K~), 1 ::;
i,j ::; 3, with values in 3 x 3 skew Hezmitian matrices which satisfies
tr/l, = 0,

(2.2) d(u,J,]) = (u, I,]) (-2J=r0
2yCIB

= (u,I,])ifJ·

[0]

Then, ifJ satisfies difJ = -ifJ A ifJ, or equivalently,

(2.3)

(2.4)

dO = -/l, A 0 + [B] AB,
d/l, = -K A /l, + 30 A tB - to A B[a.
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Let :F = Im 0 X G2 and X : :F -+ Im 0 denote the projection onto
the first factor. We regareded :F as the space of pairs (y; (u, l,f))
consisting of a base point y E Im 0 and admissible basis at that point.
Then, we have

PROPOSITION 2.2. There exists the dual basis (Tf,W,w) of(u,f,I)
on:F so that

(2.5)

Then, t/J satisfies

(2.6)

dx = (u.!,]) (~) = (u.!,])"

2.3. Let G(2, Im 0) denote the Grassmannian manifold of oriented
2-planes in Im o. We define the map ij : G2 -+ 6(2, Im 0) by ij(g) =
-2RIt 1\ 71. By (2.2), we have

(2.7) dij = ( -2vCfHu 1\ 11(-2J=I81) + It 1\ u(2yCf81
)

3

+ L:(fi 1\ 711\;~ + It 1\ 7iK~) -721\ 71 83 - It 1\ h7l
i=2

- - 2 -2+ 13 1\ 11 8 + It 1\ 13 8 }

Hence, we have

0 0 0
K

1 0 01
0 0 1\;2 1\;2 02 3

kerdij = 0 I\;~ I\;~ E 92
-1 0 01\;1

0 0 0 -2 -2
1\;2 1\;3

0 -3 1\;31\;2 3
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So, the orthogonal complement 1{ of ker dij is given by

0 -HO He
0 ~~ ~1

3

-2He ~~ 0 [0]
1{= ~~ E(h

0 -1 -1
~2 ~3

2HO [e] -2
~1
-3 0~1

Thus, we have g2 = 1i ffi ker dij. From the above observations, we may
observe that

PROPOSITION 2.3.

G(2, Im0) ~ G2 /U(2).

3. The induced almost contact structure and structure
equations on (M5,~)

Let 6, 6 be mutually orthogonal unit normal vector fields on a
neighborhood of pE M 5

• The vector field u, 1-form ." and (1.1) tensor
field cp are defined by u = 6 x 6, .,,(X) = (x, u) and cpX = X x u for
any X E X(M5 ), respectively, where x is the exterior product of 0
which is defined by x x y = (yx - xy)/2 for any x,y E o. We noted
that 6 x 6 is depend on the orientation of M 5 in lI.n 0, so u is a global
vector field on M 5 • Then, (cp, u, .", < , » is the almost contact metric
structure. In fact, for any X E X(M5 ), we get

cp2X = (X x u) x u

= {(X- < X,u > u+ < X,u > u) x u} x u

= {u(X- < X,u > un x u.

On one hand, we have

<u(X- < X,u > u),u >=0.

From these, we get

cp2x =u{u(X- <X,u> un = (u)2(X- <X,u> u) = -x +.,,(X)u.
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We get, also

< <pX, <pY > =< X x u, Y x u >
=< u(X- < X,u > u),u(Y - < Y,u > u) >
=< X -1](X)u, Y - TJ(Y)u >
=< X, Y > -TJ(X)TJ(Y).

171

Next, we shall give the structure equations of (M5, Ill). We set F\}r(M5)
= {(Pi (u, f, 7»1- 2Ah A71 = T/ M 5

}. From Fact 2.3, there exists
g E G2 such that -2Ah A71 = T/M 5

• By [2: p.194. (1.31)], we
get

<PUa) = fa X U = g(Ea ) X gee:) = Xg(Ea X e:) = yC1 Xg(Ea )

= J=1 Xg(Ea X 1) = R g(Ea ) X g(l) = J=1 fa.

By the definition of <p, we get <pcu) = u X u = O. From these facts, we
get

PROPOSITION 3.1. P: F\}r(M5) -+ M 5 is the U(2) principal right
bundle over M 5 with the natural projection P.

We call P : F\}r(M5) -+ M5 the adapted frame bundle of M 5
• By

proposition 3.1, we have the following commutative diagram.

F\}r(M5)
q,

IF

U(2)1 1G 2

M5
\}r

10

where ~ is the natural inclusion. Then, from (2.2) and (2.6), we have
the following structure equations on M 5

:

(3.1)

(3.2)

w 1 = w 1 = 0 on F\}r(M5
),

3

dx = u Q9 1] +L:{fi Q9W
i +7i Q9W

i
},

i=2
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3

(3.3) du = L {/a(-2Hoa) +Z~(2vCl7r)},
a=l

(Gauss formula)
3

(3.4) dh = u(-v'=ii) + L la~2 -1391 +1193 ,
a=l

3

(3.5) dfa = u(-Hi) + L la~~ -11fP +1201 ,
a=l

3

(3.6) dft = u(-Ri) + L I a~r -12f;3 +1302 ,
a=l

(Weingarten formula)
3

(3.7) dw2 = 2Ro2 A TJ - L~~ Aw i
- i Aw3

,

i=2
3

(3.8) dw3 =2H03 A 1] - L ~t A w i +81
Aw2

,

i=2
3

(3.9) dTJ = v'=IL(ei Awi _ Oi Awi ),

i=2
3

(3.10) ~ = -(v'=ij2) L(w i Awi
),

i=2

where ~(X,Y) =< X,<pY > for any X, Y E X(M5
). By (3.1), we

get dw1 = O. From (2.6) and Cartan's lemma, there exist a E C,
b,c E M2x1(C), A,B,C E M2X2(C) satisfying

tA=A, tC= C,

(3.11) (
0

1

) (a be) (TJ)( = -2J=Pb A Bp.,
e 2vCPc C tB 7i
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second fundamental from 11 is given by

II = -2Re{(2H7] 0 81
- tIJ 0' - tIJ 0 6)ft}

= -2Re{[2J=I7] 0 (a7] + bIJ + cp)

- tIJ 0 (-2J=Itb7J + AIJ + BJi)

- tp 0 (-2J=It c7] + CJi + t BIJ)]ft}

Hence, we have the following canonical splitting:

11(2,0) = -('IJ 0 AIJ)ft,

11(1,1) = -('IJ 0 BJi +tp 0 tBIJ)ft,

1[<°,2) = _(tp 0 CJi)ft.

The mean curvature Sj is given by

173

(3.13) fj = -(4/5)Re{(.;::T a - 2trB)ftl.

4. Normal almost contact submanifold (M5
, '11)

Let D (resp. D±) be the contact distribution which is defined by
D(p) = {X E TpM517](X) = O} (resp. D ± (p) = {X E C 0R
D(p) lipX = ±yCTX}).

THEOREM 4.1. Tbe induced almost contact metric structure of
(M5

, '11) is nonnal, if and only if
(1) D± are involutive distributions,
(2) Each integral curve of u is a line in Im V,
(3) 11(1,1) = 0, rank 11(0,2) ~ 1,
(4) M 5 is a minimal submanifold.

Proof. The induced almost contact metric structure is normal if and
only if

(4.1) ip((Vxcp)Y) - ((Vcpxcp)Y) - ((Vx7])Y)u = 0

for any X, YE X(M5 ). Any vector field Y on M 5 is given by

(4.2)
3

Y = uyO + 2)liyi +liyi).
i=2
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On one hand, by (3.3) '" (3.5), we get

3

V'xu = L{!i(-2HOi(X) +Ji(2HOi(X)},
i=2

3

(4.3) V'xh = u(-vCl7l(x» + LJiK~(X)-J301(X),
i=2

3

V'xfa = u(_vCl9
3
(X» + L !iK~(X) +J2 01 (X),

i=2

By (4.1) "-' (4.3), we get

(4.4) (V'xcp)Y = V'x(<py) - <pCV'X Y)
3

= V'x{HL(Jiyi +Ji yi )}
i=2

3

- <p{V'X(uyO + L(Jiyi +Ji yi»)}
i=2

3

= u L(Oi(X)yi + Oi(X)yi)
i=2

3

- 2{L(Ji6i(X) +JiOi(X)}YO
i=2

- 2H(h9\X)y3 - J201(X)y3)

+2H(J39\X)y2 -J301 (X)y2).

From (4.2) and (4.3), we get

3

(4.5) (V'x1])Y = RL{Oi(X)yi - (i(X)yi}.
i=2
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By (4.1), (4.4) and (4.5), we get

3

(4.6) 0 = - 2H{2)f;8;(X) + f;Oi(X)}YO
i=2

+ 2(J20\X)y3 + 1281 (X)y3)

- 2U30\X)y2 +1381(X)Y2)
3

- {u L(8i(cpX)yi + Oi(epX}yi)
;=2

3

- 2 L(J;8i(cpX) + l;Oi(cpX»Yo
i=2

- 2H(!20\cpX)y3 -f281 (cpX)y3)

+ 2HU30\cpX)y2 -f381 (cpX)y2)}
3

- uRI:{Oi(X)yi - 8i(X)Yi}.
;=2

By (4.6), we get

for any i = 2,3. By (4.7), we get

175

(4.8)

for any a = 1,2,3 and i,j =2,3. By (2.15) and (4.8), we get

(4.9)

By (4.9), we have (4). Since, 81 = 0, by (2.3), we get

(4.10) 1 2 1 3 -2-3
-K2 A 8 - K3 A 8 - 28 A 8 = 0
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By (4.9) and (4.10), we have (3). From (3.7), (3.8) and (4.9), we get

Thus, we have (1). By (3.3) and (4.9), we get

Thus, we obtain (2).

5. Quasi-Sasakian (MS, -q,) and nearly cosymplectic (M5
, w)

In this section, we shall prove the following:

THEOREM 5.1. The induced almost contact submanifold (M5 ,-q,)
is quasi-Sasakian manifold (i.e., nonnal and d/f! = 0) if and only if

(1) u is a constant vector field on M 5
,

(2) 112 ,0 = 111,1 = 0 on MS,
(3) w(M5 ) is locally isometric to N 4 x R where N 4 is a complex

hypersurface in C 3 = ((spanR {u}).L, Ju ).

Proof. By (4.9), we get

(5.1)
3

diP = - L[(li 1\ r:;:i + i 1\ wi]1\ TJ = O.
i=2

By (4.9) and (5.1), we get C = O. Hence, we have 1P,0 = O. From this
and (4.9), we get

(5.2) (10/ = 0,

for a = 1,2,3 on M 5
• By (3.3), (3.9), (4.4) and (5.2), we get

du = dTJ = (Vx<p)Y = 0

for any X, YE X(.lV[5). Thus, we get the desired conclusion.
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THEOREM 5.2. If the induced contact submanifold (M 5
, \If) is nearly

cosymplectic manifold (i.e., ('\7x<p)X = 0 for any X E X(M 5
)), then

\If is totally umbilic.

Proof. For any X E X(M 5
), we get

3

(5.3) ('\7x<p)X =U L(l~i(X)Xi+i(X)X i )

i=2
3

- 2{L(JiOi(X) + ])1i (X)}XO
i=2

- 2R(hat(X)X
3
-f201 (X)X 3

)

+2R(hat(X)X
2
-f301 (X)X 2

),

(5.4)

By (5.4), we get

(5.5) (i) = (~o ~ -AaI2) (Z).
Cl 0 yCfah Ji

By (5.5), the mean curvature fj is given by

(5.6) fj = -4Re{(Ha)fd·

By (2.3), (3.9) and (5.5), we get

3

(5.7) dfJ 1 = - L K~ /\ fJa - 2fJ2
/\ fJ3

0'=1

= d(a7J) = da /\ 7J + HaCe /\ p. - to/\ Ji).
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By (5.5) and (5.7), we get
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(5.8)
da /\ TJ + Ii:~ /\ aTJ = 0,

Ha(O /\ j.l - t() /\ Ji) = t() /\ ( _ 2()2 /\ ()3.

If we put F = (~ ~1), then we get

(5.9) () = HaFp,.

By (5.8)z and (5.9), we get

(5.10) vCla{H(itj.lF /\ j.l- HatJiF /\ Ji}

= (-HatJiF) /\ (Aj.l - HaJi) - 2(-Haw3
) /\ ( H aw2

).

We take the (1,1)-part of (5.10), (Since the form TJ is a contact form,
a f: 0 (see 7, Proposition 7.1)), we get A = O. Hence, by (5.5) and
(5.6), the second fundamental form is given by

By the structure equations, we have

PROPOSITION 5.3. The induced almost contact metric structure is
not associated one (i.e., 2~ f: dTJ).

Proof. If 2~ = dTJ, then we have

(5.11)
3

-,;:::pJ.l/\ Ji = H~)jji /\ wi _ ()i /\ wi)
i=2

By (3.11) and (5.11), we get

(5.12)

(0 -1) (k 1) <)where F = 1 0 . If we put C = 1 m ,then, by (5.L.J3, we

have 1 +I = 1 = -1. This is a contradiction.
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COROLLARY 5.4. Tbe induced almost contact submanifold in Im V

is not Sasakian manifold.

6. The relation of the Gauss map

THEOREM 6.1. Let 9 : M 5 -+ G(2,ImV) = G2 /U(2) be the Gauss
map and i the canonical complex structure on G(2, Im V).

(1) H tbe Gauss map 9 is cp-bolomorphic (i.e., dg 0 cp = j 0 dg), tben
M 5 is a quasi-Sasakian manifold.

(2) H tbe Gauss map 9 is anti-<p-bolomorphic (i.e., dg 0 cp = -i 0 dg),
tben M 5 is a normal almost contact manifold and 112 ,0 = 111 ,1 = 0.

Proof. The (1,0) part of the canonical almost complex structure of
- 2 3 1 -2 -3

G(2, Im V) is given by spana {R"I' R"1' e ,e ,e }. By (2.7), we get

3

(6.1) dg = (-2vCIHu 1\ fl( -2vCI(1) + L h 1\ 71 K;
i=2

3

+ (2vCIH/l 1\ u(2vCIe1) + L 11 1\ fiK.i
i=2

~ -2
-hl\he +hl\he}.

Case (1). 9 is cp-holomorphic if and only if

(6.2)

By (6.2), we get

dg(u) =° and (dg(fiWO,I) = 0.

(6.3) 1 i i -1 i i
e (u) = Kl(u) = e (u) = e (h) = e (h) = K1(h) = 0,

for any i,j = 2,3. By (3.11) and (6.3), we get 11(0,2) = n(I,I) = 0.
By Theorem 5.1, we get desired result. Similarly, in case (2), we get
the conclusion.
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7. On the contact manifolds

By the direct calculation, we get the following:

PROPOSITION 7.1. 77/\ (d77)2 = -2{2 Re(detC) + IICII2 -lItr BII2}.

COROLLARY 7.2. Let (MS, \lI') be tbe normal almost contact mani-
fold witb 77/\ (d77)2 = o. Tben, it is a quasi-Sasakian manifold.

Next, we shall consider the relation between the induced contact
structure and the product immersion. Let f e x g : M 3 x N 2 - He El1
Im H ~ Im V be the product immersion where f : M 3

- H and
g : N 2 _ Im H are oriented hypersurfaces, and e = (0,1) E Im V.
We denote by 6 (resp. 6) the unit normal vector field of M 3 in H
(resp. N 2 in ImH). Then, we have 6(q) x 6(p)e E Tp M 3 for any
(p, q) E M 3 X N 2

• In fact, we get

(7.1) 6(q) x 6 (p)e = (6 (p)6(q))e.

On one hand, {(6(p)i)e, (6(p)j)e, (6(p)k)e} is an orthonormal basis
of Tp M 3 where {1, i,j, k} is the canonical basis of H. Hence, by (7.1),
we get

(7.2) 6(q) x 6(p)e = (6(q), i}(6(p)i)e

+ (6(q),j}(6(p)j)e + (6(q), k}(6(p)k)e.

We put PI = (6(q),i), P2 = (6(q),j), P3 = (6(q),k). Let wt, w 2
, w3

be the dual I-forms on M 3 of the basis 6i, 6j, 6k, respectively. Then,
by (7.2), the forms 77, d77 is represented by

(7.3)

3

77 = L POIwex,
01=1

323

d77 = L {L dpOI(ei)vi /\ war} + L pOIdw Ol
,

01=1 i=l 01=1

where {el, e2} is the orthonormal frame of TqN 2 and {Vb V2} is the

dual1-forms of {el, e2} on N2. Since, dw Ol = E~,-Y=l Np..,w P /\ w.." we
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(7.4) 7J 1\ (d1]l
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jll

=-2 djlI(et)
djll(e2)

jl2 jl3
djl2(et) djl3(eI) VI 1\ v2 1\ w l 1\ w2 1\ w3.
djl2(e2) djl3( e2)

IT we take {el, e2} the principal vector of the shape operator A6 , then
(7.4) implies

7J 1\ (d1])2 = -2K(7l 1\ (72,

where K is the Gauss curvature of N 2 and (71 (resp. (72) is the volume
element of N 2 (resp. M 3

). Hence, we get the following;

THEOREM 7.3. Let fe; x 9 : M 3 x N 2
-4 He; Efl lmH ~ lmV be

the product immersion where f : M 3
-4 H and 9 : N 2

-4 lm H are
oriented hypersurfaces, and e; = (0,1) E Im V. Then, we have

where K is the Gauss curvature of N 2 and (7 is the volume element of
M 3 x N 2 •

From this, we see that there exists many contact submanifolds (M 3 x
N 2

, fe; X g) in lm V. However, we have

COROLLARY 7.4. If N 2 is diffeomorphic to the torus and M 3
IS

compact, the induced almost contact structure is not a contact.

Proof. By Theorem 7.3 and Gauss-Bonnet Theorem, we get

where X (N2) is the Euler number of N 2. Since N 2 is diffeomorphic to
torus, we have

Hence, there exists a point m E M 3 x N 2 such that 1] 1\ (d"l)2 (m) = O.

REMARK. Corollary 7.5 is a partial negative answer to Blair's prob
lem in ([1; page 71]).
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