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ON THE STRUCTURES OF CLASS SEMIGROUPS OF
QUADRATIC NON-MAXIMAL ORDERS

YonG TAE KiM

Abstract. Buchmann and Williams[l] proposed a key exchange
system making use of the properties of the maximal order of an
imaginary quadratic field. Hiihnlein et al. [6,7] also introduced a
cryptosystem with trapdoor decryption in the class group of the
non-maximal imaginary quadratic order with prime conductor q.
Their common techniques are based on the properties of the in-
vertible ideals of the maximal or non-maximal orders respectively.
Kim and Moon [8], however, proposed a key-exchange system and
a public-key encryption scheme, based on the class semigroups of
imaginary quadratic non-maximal orders. In Kim and Moon[8]’s
cryptosystem, a non-invertible ideal is chosen as a generator of key-
exchange ststem and their secret key is some characteristic value of
the ideal on the basis of Zanardo et al.[9]’s quantity for ideal equiv-
alence. In this paper we propose the methods for finding the non-
invertible ideals corresponding to non-primitive quadratic forms
and clarify the structure of the class semigroup of non-maximal
order as finitely disjoint union of groups with some quantities cor-
rectly. And then we correct the misconceptions of Zanardo et al.[9]

and analyze Kim and Moon|8]’s cryptosystem.
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1. Introduction

Public key cryptography is unquestionably a core technology which
is widely applied to information technology systems and electronic com-
merce. As one of public key cryptosystems, a key exchange system
making use of the properties of the maximal order of an imaginary qua-
dratic field is proposed by Buchmann and Williams[1]. Hihnlein et al
[6,7] also introduced a cryptosystem with trapdoor decryption based
on the difficulty of computing discrete logarithms in the class group
of the non-maximal imaginary quadratic order with prime conductor
q. Their common techniques are based on the properties of the invert-
ible ideals of the maximal or non-maximal orders respectively. Kim and
Moon [8], however, proposed a key-exchange system and a public-key en-
cryption scheme, based on the class semigroups of imaginary quadratic
non-maximal orders, whose securities are based on the fact that there is
no efficient algorithm to compute the structure of the class semigroup
of a non-maximal order and the unique factorization can fail for non-
invertible ideals. In Kim and Moon|[8]’s cryptosystem, a non-invertible
ideal is chosen as a generator of key-exchange ststem and their secret key
is some characteristic value of the ideal on the basis of Zanardo et al.[9]’s
quantity for ideal equivalence. Zanardo, however, was wrong in defining
the condition for equivalence relation between ideals. In this paper we
propose the methods for finding the non-invertible ideals corresponding
to non-primitive quadratic forms and clarify the structure of the class
semigroup of non-maximal order as finitely disjoint union of groups with
some quantities correctly. And then we correct the misconceptions of

Zanardo et al.[9] and anlayze Kim and Moon[8]'s cryptosystem.

2.Preliminaries
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In this chapter, we introduce some facts concerning class semigroup
in imaginary quadratic field. Throughout this paper, most of the termi-
nologies are due to Gauss[3] and notations and some preliminaries due
to Cox[2] and Zanardo et al.[9] and the notations O,Z and Q denote
the imaginary quadratic non-maximal order, the ring of integers and
the field of rational numbers respectively. Let D) < 0 be a square free
rational integer and set D = 4TD , where r = 2 if D; = 1 mod 4 and
r=1if Dy = 2,3 mod 4. Then K = Q(v/D,) is an imaginary quadratic
field of discriminant D. Note that K = Q(vD). If o, 3 € K, we denote
by [a, 8] the set «Z + 3Z. Then an order in K having conductor f with
discriminant D; = f%D is denoted by O = [1, fw], where w = QZ—‘/E.
An (integral) ideal A of O is a subset of O such that o+ 3 € 4 and
aX € A whenever o, 3 € A,A € 0. For a € K,o/,N(«) and Tr(c)
denote the complex conjugate, norm and trace of « respectively. Let
v = fw. Then any ideal A of O (any O-ideal) is given by A = [a,b+ cv],
where a,b,c€ Z,a>0,c>0,c¢c|a,c|band ac| N{b+cy). If c =1,
then A is called primitive, which means that A has no rational integer
factors other than 1(throughout this paper we may make use of prim-
itive ideals only, because ideal multiplication always means ideal class
multiplication containing the ideal). Then A = [a,b+ 7] is O -ideal if
and only if a divides N(b + v). We say that A and B are equivalent
ideals of O and denote A ~ B if there exist non-zero o, 8 € K such
that (o)A = (8)B (this relation actually is equivalent relation). We
denote the equivalence class of an ideal A by A. Let I(O) be the set of
non-zero fractional ideals of O and P(O) the set of non-zero principal
ideals of O. Then Cls(0O) = I(0)/P(0O) will be the class semigroup of
the order O.

3. Structures of the class semigroup Cls(O)
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In this chapter we construct the ideals using positive definite qua-
dratic forms which are the generalizations of the facts, discussed by
Cox[2], for quadratic forms, orders and ideals. And we will clarify the
group GEk so that we can construct Cls(O) explicitely. After then, we
will correct some misconceptions concerning ideal equivalence appeared
in Zanardo et al.[9] and explain why the cryptosystem proposed by Kim
and Moon[8] can be broken easily. The reason is closely related to the
misconceptions in Zanardo et al.[9]. In the sequel, we will set the qua-
dratic form f(z,y) = az? + bzy + cy? as (a, b, ¢) for brevity and call
the root of f(z,y) if f(,1) = 0 and 5 lies in the upper half plane H.

We begin with introducing a lemma due to Cox[2}.

Lemma 3.1.(Confer [2,Proposition 7.4]) Let O be an order in a imagi-
nary quadratic field K, and let A be a fractional O-ideal. Then

(BeK|BAC A =0

if and only if A is invertible.

The generalization of Lemma 3.1 can be as following.

Lemma 3.2. Let f(z,y) = (a, b, ¢) be a positive definite quadratic form
with discriminant Dy, where k = ged(a, b, c). Let i be the root of f(z).
Then [a,an] is invertible ideal if £ = 1 and is non-invertible if £ > 1 in
the order O =[1,] of K.

Proof. Firstly, we note that {1,an| is an order of K, since an is an
algebraic integer. Now, we can show whether [a, an] is a invertible ideal
or not in [1, an] according to k = 1 or not. For a given 8 € K, 8la,an| C
la, an] is equivalent to Ba € [a,an] and F(an) € [a, an]. Since af belongs
to [a.an|, a@ = ma + n{an), that is , 3 = m + nn for some rational
integers m and n.

Conversely, for any rational integers m and n, an(m+nn) clearly belongs
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to [a, an|. For the second, note that
B(an) = man + nan? = man + n(—by — ¢) = —nc + (ma — nb)y.

Thus, G(an) € [a,an] if and only if a | nc and a | nb and m is arbitrary.
If k=1, then a | n. However if k£ > 1, then gecd(e, b) and ged(a,c) > k.
Therefore there exist an non-trivial divisor s of ¢ and arbitrary rational

integer m such that a(m + sn) € [a, an]. These facts tell us,

{ﬁ €K | 5[(‘17 (”7] C [aa a"?]} = [1,0:7]]

if and only if & = 1. Therefore |a, an] is invertible in [1,an] if &k = 1

and non-invertible if & > 1 by Lemma 3.1. Moreover, since f is the

conductor of O with discriminant D¢, an = —# +~. Since fD and b

have the same parity, we have 9—+—2f—D € Z. It follows that [1,an] = [1,7]
and thus [a, an] = [a, —b+2fD + ~] is an O-ideal. O

Especially if @ = k, then we denote the module {k, k7] by Ej. For
a quadratic form f(z,y), let f(z,y) = (ka1, kb1, ker) = kfi(z,y) when-

ever k = ged(a, b, ¢) from now on.

Corollary 3.3. For any divisor k | f, £ = [k,~]. Moreover, E? = kEy

, in other words Ez = F.

Proof. Let f(x,y) = (k,kby, kci) with discriminant Dy , where f =
kd, k = ged(k, kby, kep). Then kn — v € kZ since b) and dD are same
parity. Therefore [k, kn] = [k,~]. Clearly k divides N(») so that Ej is
an O-ideal. To prove the last claim, note that E; = E}, since k devides
Tr(v). From this fact and k?|N(v), we have

E} = ExE} = [k,4][k,+] = [k* kv, kv, N(v)] = k[k, 7] = kE,

and thus E,QC =FE;.. O
We, now, introduce some facts due to Zanardo et al.[9] and Howie[5]
below. In [9], Zanardo et al. described the structure of the class semi-

group Cls(O) explicitly. They, however, were wrong in defining the
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ideal equivalence. Therefore the structure of Cls(O) was somewhat am-
biguous. After dicussing some facts concerning the set of groups G’s
consisting of Cls(0), we will clarify the structure of Cls(O) by giving
a theorem. We remind that the commutative semigroup S is called a
Clifford commutative semigroup if one of the following equivalent state-
ments holds(Confer [9] and [5,pp94-95 Theorem 2.1]).

C1) every element x of S is contained in a subgroup G of S,

C2) every element = of & is regular, i.e. there exists y € & such that
r = z%y (such an 7 is called von Neumann regular) ,

C3) S is a semilattice of groups.

And recall that a commutative semigroup § is the disjoint union of the
subgroups of the form G. generated by an idempotent e, where G, =
{x € §| ze = x and zy = e for some y € S}. Let us denote by C the set
of idempotent elements of Cls(0). Recall that a non-zero ideal E of O
is called idempotent if E is idempotent as an element of Cls(O), that is
E? = \E for some X\ € K. Therefore Ej is idempotent and especially O
is an idempotent element of itself and the subgroup Gg of Cls(O) con-
sists of the equivalence classes of invertible ideals of £} = O since k = 1.
Thus we shall write each element of C in the form E;, where Fj, = [k, 7]
for a suitable divisor k of f and Fj is said to be a canonical represen-
tative for the class containing it. For an non-zero O-ideal [ = [a,b+ 7],
We now define an important quantity ged(/) = ged(a, Tr(b+7), ]—V@)
To complete the discussion for the structure of Cls(O), let’s characterize

some properties of ged([).

Lemma 3.4. If I = [a,b+~] is a non-zero -ideal, then ged(I) divides f.

Proof. Let k = ged(I) for brevity. Since I is an primitive -ideal, a
divides N{b + ), and thus k = ged(a, Tr(b+ ), W) divides a and
k? | N(b++) and k|Tr(b+~). If we choose an element § = £(b+7) € K,
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then Tr(6) = $Tr{b+v) and N(9) = 5 N(b + v), which are both ra-
tional integers, since k? | N(b+ ) and k& | Tr(b + ~). Therefore 6 is
an algebraic integer and thus is contained in the maximal order [1,w].
Consequently & divides both b and f. [J

Lemma 3.5.(Confer [9, Theorem 10, Proposition 13 )

(a) Let I = [a,b+ 7] be a non-zero O-ideal and let k = ged(]) and
Ey = [k,%]. Then we have II' = aEy, I Fy = kI.

(b)The idempotents of Cls(Q) are the equivalence classes of ideals of
the forms E) = [k,7], where k € Z divides f.

Lemma 3.6. (Confer Gauss[3, art.236])
Let A and B be O-ideals. Then ged(AB) = lem(ged(A), ged(B)).

It is well-known that the cardinality of Cls(O) is finite. Then we

have the following.

Theorem 3.7. The class semigroup Cls(0) = Uy ;Gg, where Gg— is
the set of all O-ideals A's such that gcd(A) = k.

Proof. For any O-ideal A = [a,b + 7] with ged(A4) = k, A%A’
A(aE}) = akA by Lemma 3.5 (a), that is A = A°A. In other words A

is von Neumann regular. Therefore Cls(O) is a Clifford semigroup by

[l

the equivalence relation (C2). Equivalently Cls(O) is a finitely disjoint
union of groups of the form G.’s, where e is an idempotent element of
Cls(0). Moerover Cls(0O) has a semilattice structure (C3) with a ho-
momorphism between groups. From Lemma 3.5(b), C= {E; | k | f}.
Then Gg- = {A | AE; = A and AB = E} for some B € Cls(0)}.
Let G be the set of all O-ideal A’s such that ged(A) = k. We claim
that G = G. In fact; For any O-ideal A, ged(A) divides f by Lemma
3.4. Suppose that gcd(A) = k, then AE, = A and AA’ = FE; by
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Lemma 3.5 (a). Therefore A € Gy Conversely suppose that B € Gg;
and gced(B) = h. Then BB’ = E; by Lemma 3.5 (a). Note that
ged(A) = ged(A”). Therefore ged(AA’) = ged(A) by Lemma 3.6. There-
fore h = ged(B) = ged(BB') = ged(Ey) = k. This completes the proof
O

Combining Lemma 3.6 and Theorem 3.7, we can see the following,.

Corollary 3.8. If two ideal classes A and B belong to Gg, and Gg,
respectively, then AB belongs to G, where [ = lem(k, h).

Now we discuss some facts concerning the ideal equivalence which
was claimed by Zanardo et al.[9] and the secret key which was chosen by

Kim and Moon([8]. By the facts discussed above we can see the following.

Remark 3.9. {a) Two ideals A and B are in the same group Gz, if
and only if & = ged(A) = ged(B) by Theorem 3.7. In general the fact
that two O-ideal A and B is equivalent if and only if ged(A4)=ged(B)
(confer [9, p.387 ]) is not true. For example, suppose that O is an
order with D, = —6 and f = 5. Then Dy = —600, K = Q(/—6)
and O = [1,54/-6]. Then there are only two idempotents O and E5 =
[5—,_5_\/:_6] in Cls(0). Therefore Cls(0) = Gz U G and two ideal
classes F5 = [5,5,/=6] and N = [10,5,/—6] belong to Gz Note that
ged(Es) = ged(N) = 5 and they are not equivalent.

(b) Analysis of Kim-Moon’s key-exchange system

Kim and Moon proposed the following cryptosystem[8, Chapter 3.1,
p492].

Two users Alice and Bob select a value Dy and a non-invertible ideal T
in O. The value of D and ideal  made public.

1.Alice selects at random an integer z and computes a reduced ideal J
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such that
J~ I,

Alice sends .J to Bob.
2. Bob selects at random an integer y and computes a reduced ideal M
such that

M~ IV

Bob sends M to Alice.

3. Alice computes a reduced ideal U; ~ M7; Bob computes a reduced
ideal Uy ~ JY.

Note that U; ~ M* ~ ([¥)* = ([F)YW ~ JY¥ ~ Uy. Thus if U} =
[L(U}1), 1) and Uy = [L(U3), ), then Alice and Bob can use

N{az)
" L(Us)

ged(L(U7), N (al),TT(al)) = ged(L(Us)

0N ,Tr(ag))

as their secret key.

The class I of the generator I in this system belongs to GE_k for some
divisor k of f. Then ged(I) = k. However, any power of [ is equivalent
to a unique reduced ideal T with the same gcd(T') = k since T belongs to
G by Theorem 3.7. Therefore this cryptosystem becomes to be trivial.
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