• Title/Summary/Keyword: Image output system

Search Result 399, Processing Time 0.029 seconds

Thermal Image Real-time estimation and Fire Alarm by using a CCD Camera (CCD 카메라를 이용한 열화상 실시간 추정과 화재경보)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.92-98
    • /
    • 2016
  • This study evaluated thermal image real-time estimation and fire alarm using by a CCD camera, which has been a seamless feature-point analysis method, according to the angle and position and image fusion by a vector coordinate point set-up of equal shape. The system has higher accuracy, fixing data value of temperature sensing and fire image of 0~255, and sensor output-value of 0~5,000. The operation time of a flame specimen within 500 m, 1000 m, and 1500 m from the test report specimen took 7 s, 26 s, and 62 s, respectively, and image creation was proven. A diagnosis of fire accident was designated to 3 steps: Caution/Alarm/Fire. Therefore, a series of process and the transmission of SNS were identified. A light bulb and fluorescent bulb were also tested for a false alarm test, but no false alarm occurred. The possibility that an unwanted alarm will be reduced was verified through a forecast of the fire progress or real-time estimation of a thermal image by the change in the image of a time-based flame and an analysis of the diffusion velocity.

Inertial Sensor Aided Motion Deblurring for Strapdown Image Seekers (관성센서를 이용한 스트랩다운 탐색기 훼손영상 복원기법)

  • Kim, Ki-Seung;Ra, Sung-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • This paper proposes a practical linear recursive robust motion deblurring filter using the inertial sensor measurements for strapdown image seekers. The angular rate information obtained from the gyro mounted on the missile is used to define the PSF(point spread function). Since the gyro output contains a unknown but bounded bias error. the motion blur image model can be expressed as the linear uncertain system. In consequence, the motion deblurring problem can be cast into the robust Kalman filtering which provides reliable state estimates even in the presence of the parametric uncertainty due to the gyro bias. Through the computer simulations using the actual IR scenes, it is verified that the proposed algorithm guarantees the robust motion deblurring performance.

Velocity Measurements of Slurry Flows in CMP Process by Particle Image Velocimetry (Particle Image Velocimetry 기법을 이용한 CMP 공정의 Slurry유동 분석)

  • Kim Mun-Ki;Yoon Young-Bin;Koh Young-Ho;Hong Chang-Gi;Shin Sang-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.59-67
    • /
    • 2006
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some previous works show that RR is determined by production of pressure and velocity and NU is also largely affected by velocity of flowfield during CMP. This study is about the direct measurement of velocity of slurry during CMP and whole flowfield upon the non-groove pad by Particle Image Velocimetry(PIV). Typical PIV system is modified adequately for inspecting CMP and slurry flowfield is measured by changing both pad rpm and carrier rpm. We performed measurement with giving some variation in the kinds of pad. The results show that the flowfield is majorly determined not by Carrier but by Pad in the case of non-groove pad.

TEC-less Thermal Image Processing Method for Small Arms (소형 화기용 TEC-less 열상 처리 기법)

  • Kwak, Dongmin;Yoon, Joohong;Yang, Dongwon;Lee, Yonghun;Seo, Yongseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.162-169
    • /
    • 2019
  • This paper describes a thermal image processing algorithm for uncooled type TEC-less IR detector which is applicable to fire control system of small arms. We implemented a real-time gain and offset compensation algorithm based on polynomial approximation from the raw dataset which is acquired by two reference temperature of blackbody from various FPA(Focal Plane Array) temperature. Through the experiment, we analyzed the output characteristics of detector's raw-data and compared IR image quality to traditional non-uniformity correction method. It shows that the proposed method works well in all FPA temperature range with low residual non-uniformity.

Image Restoration Algorithm Damaged by Mixed Noise using Fuzzy Weights and Noise Judgment (퍼지 가중치와 잡음판단을 이용한 복합잡음에 훼손된 영상의 복원 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.133-135
    • /
    • 2022
  • With the development of IoT and AI technologies and media, various digital devices are being used, and unmanned and automation is progressing rapidly. In particular, high-level image processing technology is required in fields such as smart factories, autonomous driving technology, and intelligent CCTV. However, noise present in the image affects processes such as edge detection and object recognition, and causes deterioration of system accuracy and reliability. In this paper, we propose a filtering algorithm using fuzzy weights to reconstruct images damaged by complex noise. The proposed algorithm obtains a reference value using noise judgment and calculates the final output by applying a fuzzy weight. Simulation was conducted to verify the performance of the proposed algorithm, and the result image was compared with the existing filter algorithm and evaluated.

  • PDF

MULTI-APERTURE IMAGE PROCESSING USING DEEP LEARNING

  • GEONHO HWANG;CHANG HOON SONG;TAE KYUNG LEE;HOJUN NA;MYUNGJOO KANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.56-74
    • /
    • 2023
  • In order to obtain practical and high-quality satellite images containing high-frequency components, a large aperture optical system is required, which has a limitation in that it greatly increases the payload weight. As an attempt to overcome the problem, many multi-aperture optical systems have been proposed, but in many cases, these optical systems do not include high-frequency components in all directions, and making such an high-quality image is an ill-posed problem. In this paper, we use deep learning to overcome the limitation. A deep learning model receives low-quality images as input, estimates the Point Spread Function, PSF, and combines them to output a single high-quality image. We model images obtained from three rectangular apertures arranged in a regular polygon shape. We also propose the Modulation Transfer Function Loss, MTF Loss, which can capture the high-frequency components of the images. We present qualitative and quantitative results obtained through experiments.

Example-based Super Resolution Text Image Reconstruction Using Image Observation Model (영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원)

  • Park, Gyu-Ro;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.295-302
    • /
    • 2010
  • Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.

Evaluation System of Psychological Feelings for Corporate Identity Symbol Marks Using Fuzzy Neural Networks (퍼지 - 뉴럴네트워크를 이용한 CI 심벌마크의 감성평가시스템)

  • Chang, In-Seong;Park, Yong-Ju
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • In this paper, we construct an automatic evaluation system of psychological feeling for corporate identity (CI) symbol mark based on a fuzzy neural network technique. The system is modelled by trainable fuzzy inference rules with several input variables (qualitative and quantitative design components of CI symbol mark) and a single output variable (consumer's feeling). The back propagation learning algorithm, which is a conventional learning method of multilayer feedforward neural networks, is used for parameter identification of the fuzzy inference system. The learning ability to train data and the generalization ability to test data are evaluated for the proposed evaluation system by computer simulations.

  • PDF

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.