This paper proposes a color-based image retrieval method using color adjacency and gradient. In proposed method, both the adjacency of different colors and gradient of a color in homogeneous region are considered as features of an image. The gradient, defined as the maximum distance along the direction with largest change of color, is computed for each pixel to determine whether the center color is similar or different to the neighboring colors. Therefore the problems caused by uniform quantization, which is popularly used at most existing retrieval, can be avoided. And furthermore, the storage of the feature is reduced by the proposed binary representation.
A variant of the global conjugate gradient method for solving general linear systems with multiple right-hand sides is proposed. This method is called as the global conjugate gradient linear least squares (Gl-CGLS) method since it is based on the conjugate gradient least squares method(CGLS). We present how this method can be implemented for the image deblurring problems with Neumann boundary conditions. Numerical experiments are tested on some blurred images for the purpose of comparing the computational efficiencies of Gl-CGLS with CGLS and Gl-LSQR. The results show that Gl-CGLS method is numerically more efficient than others for the ill-posed problems.
Kim, Woo Suk;Lee, Juseong;An, Ho-Myoung;Kim, Jooyeon
Transactions on Electrical and Electronic Materials
/
제18권6호
/
pp.320-322
/
2017
In this paper, a high-performance, low-area gradient-magnitude calculator architecture is proposed, based on approximate image processing. To reduce the computational complexity of the gradient-magnitude calculation, vector properties, the symmetry axis, and common terms were applied in a hardware-resource-shared architec-ture. The proposed gradient-magnitude calculator was implemented using an Altera Cyclone IV FPGA (EP4CE115F29) and the Quartus II v.16 device software. It satisfied the output-data quality while reducing the logic elements by 23% and the embedded multipliers by 76%, compared with previous work.
본 논문에서는 그래디언트 히스토그램을 기반으로 하는 영상 품질 평가 알고리즘을 제안하였다. 이는 목표 영상의 그래디언트 영상을 히스토그램으로 나타낼 경우 영상의 특성을 잘 나타낸다는 장점을 이용하였다. 제안한 방법에서 영상의 품질은 목표 영상에서 얻어진 그래디언트 히스토그램의 기울기에 의해 평가되고, 그래디언트 히스토그램을 대표하는 선의 기울기는 RANSAC (Random Sample Consensus)에 의해 측정된다. LIVE 영상 품질 평가 데이터베이스를 사용한 실험 결과를 통하여 제안한 알고리즘이 현존하는 다른 알고리즘에 비해 실제 사람의 영상에 대한 평가와 유사하다는 것을 확인할 수 있다.
이 논문에서는 디지털 영상의 퍼지 시스템 표현으로부터 유도된 Edge 검출 알고리듬에 대하여 기술한다. 이 알고리듬은 Gradient을 기반으로 한 것으로 Convolution Kernel이 기존의 Roberts, Prewitt 또는 Sobel등이 제안한 Gradient Kernel과 다른 새로운 것이다. 사용한 퍼지시스템은 디지털 영상을 근사적으로 표현한 Bicubic Spline 함수를 퍼지시스템 화한것으로서 2차 도함수가 연속이기 때문에 Gradient나 Laplacian 연산이 가능하다. Grid 점들에서 이 함수의 Gradient는 두 개의 축 방향으로 각각 한개의 3$\times$3행렬과 영상과의 Covolution에 의하여 산출됨을 보였으며 이를 이용하여 검출된 Edge들은 기존의 다른 방법을 사용하여 검출된 Edge 영상보다 훨씬 선명함을 확인하였다. 이 알고리듬 적용사례 2개에 대한 기술에 포함되어 있다.
Motion detection is an important step in computer vision and image processing. Traditional motion detection systems are classified into two categories, namely, feature based and gradient based. In feature based motion detection, features in consecutive frames are detected and matched. Gradient based methods assume that the intensity varies linearly and locally. The method, which we propose, is neither feature nor gradient based but uses the electric field theory. The pixels in an image are modeled as point charges and motion is detected by using the variations between the two electric fields produced by the charges corresponding to the two images.
본 연구에서는 이미지 기울기 영역에서 포아송 방정식을 이용한 빠른 이미지 재구성 기법을 제안한다. 포아송 방정식을 사용하는 이 접근법에서, 유도된 벡터 필드는 제 1 단계에서 선택된 영역 내에서 원본과 대상 이미지를 사용함으로써 생성된다. 다음으로, 유도된 벡터는 결과 이미지를 생성하는데 사용된다. 우리는 원하는 기울기 집합과 데이터 항을 근사화하는 2차원 함수를 재구성하는 문제를 분석했다. 결합된 데이터와 기울기는 원본 이미지에 가깝게 머무르는 동안 이미지 기울기를 수정하는 것처럼 작동 할 수 있다. 이 공식으로부터 우리는 물리학에서 알려진 포아송 방정식을 찾아냈다. 이 방정식은 FFT 도메인의 문제에 대한 효율적인 해결책을 제시한다. 이것은 2차원으로 알려진 포아송 모델을 해결하고 기울기 비례축소는 라플라스를 확실하게 일반화하는 잘 정의된 선명한 필터임을 공간 필터에 잘 나타냅니다. 포아송 모델을 기반으로 이산 코사인 변환을 사용하여 결과를 확인할 수 있었다.
Joint photographic experts group (JPEG) is a standard still-image compression technique, established by the international organization for standardization (ISO) and international telecommunication standardization sector (ITUT). The standard is intended to be utilized in the various kinds of color still imaging systems as a standard color image coding format. Because JPEG is a lossy compression, the decompressed image pixel values are not the same as the value before compression. Various distortions of JPEG compression and JPEG recompression has been reported in various papers. The Image compressed by JPEG is often recompressed by same type compression method in JPEG. In general, JPEG is a lossy compression and the quality of compressed image is predicted that is varied in according to recompression Q-factor. In this paper, four difference color samples(photo image, gradient image, gradient image, vector drawing image, text image) were compressed in according to various Q-factor, and then the compressed images were recompressed according to various Q-factor once again. As the result, this paper evaluate the variation of image quality and file size in JPEG recompression and recommed the optimum recompression factor.
분산된 환경에서 머신 러닝의 학습 가중치를 공유하여 학습하는 방법은 훈련 데이터를 직접 공유하는 것이 아니기 때문에 안전한 것으로 여겨졌다. 하지만, 최근 연구에 따르면 악의적인 공격자가 공유된 가중치를 분석하여 원본 데이터를 완벽하게 복원할 수 있는 취약점이 발견되었다. Gradient Leakage Attack은 이러한 취약점을 이용해 훈련 데이터를 복원하는 공격 기법이다. 본 연구에서는 개별 장치에서 학습을 진행하고 가중치를 서버와 공유하는 학습 환경인 연합 학습 환경에서 해당 공격을 방어하기 위해 이산 코사인 변환에 기반한 이미지 변환 기법을 제시한다. 실험 결과, 우리의 이미지 변환 기법을 적용하면 공유된 가중치로부터 원본 데이터를 완벽하게 복원할 수 없다.
In this paper, we develop a TMS320C31- 60 DSP board to generate spiral gradient waveforms for Spiral imaging, one of the ultra fast MRI methods. In Spiral imaging, accurate gradient waveforms are very important to acquire high quality image. For this purpose, sampling rate for generating the gradient waveforms is set twice as high as the data sampling rate. With the developed DSP board accurate gradient waveforms are obtained. Ultra fast MR image with the developed DSP board is currently under development.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.