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IMAGE RESTORATION BY THE GLOBAL CONJUGATE

GRADIENT LEAST SQUARES METHOD

SEYOUNG OH, SUNJOO KWON∗ AND JAE HEON YUN

Abstract. A variant of the global conjugate gradient method for solving
general linear systems with multiple right-hand sides is proposed. This

method is called as the global conjugate gradient linear least squares (Gl-
CGLS) method since it is based on the conjugate gradient least squares
method(CGLS). We present how this method can be implemented for the
image deblurring problems with Neumann boundary conditions. Numerical

experiments are tested on some blurred images for the purpose of comparing
the computational efficiencies of Gl-CGLS with CGLS and Gl-LSQR. The
results show that Gl-CGLS method is numerically more efficient than others
for the ill-posed problems.
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1. Introduction

The collection of several sparse linear systems with the same coefficient matrix
but many different right-hand sides can be written as

AX = B, (1)

where A is an N × N nonsingular and nonsymmetric coefficient matrix, and
the columns b(i) and x(i) of B and X are the right-hand side and the solution
of the sparse linear system Ax(i) = b(i), i = 1, 2, . . . , s respectively. In practice,
using a method for all the systems simultaneously is more efficient than applying
iterative methods to each linear system, when s, the number of columns in B and
X, is moderately less than N . The Gl-LSQR method, a global version of least
squares QR(LSQR) algorithm [13] and a generalization of the classical Krylov
subspace methods, has been developed by reducing the coefficient matrix A to a
lower bidiagonal matrix form and formulating a simple recurrence relation of the
approximate solutions {Xk}. Their tests in [13] show that the Gl-LSQR method
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has some advantages over some other global methods, such as the global FOM
and the global GMRES algorithms based on matrix Krylov subspace methods
[5], in the memory storage and computational cost points of view. To solve
symmetric positive definite linear system of equations with multiple right-hand
sides, Salkuyeh had extracted the global conjugate gradient method (Gl-CG)
from Gl-FOM and Gl-GMRES [10]. His numerical tests show that the global
CG-type algorithms are often less cost effective than that of the just conjugate
gradient algorithm applied to a sequence of right-hand sides.

The regularized deblurring problems, illustrating the general space-invariant
imaging system, are often modeled as a linear least squares problems:

min
x

(∥Hx− b∥22 + λ2 ∥Lx∥22), (2)

where H is the M × N blurring ill-conditioned matrix with some block struc-
tures, and b and x represent the observed and the original image respectively.
The regularization parameter λ is positive, and the regularization operator L is
selected to achieve a solution with desirable properties [3].

The preconditioned conjugate gradient least squares (PCGLS) method or its
variants can be applied to the normal equations of (2) with symmetric positive
definite coefficient matrix [1]. CGLS is an iterative method with similar qualita-
tive properties as LSQR, but requires less work per iteration and more storages
than LSQR [8, 9]. It is known that if the preconditioned and regularized coeffi-
cient matrix of (2) is well conditioned, PCGLS is somewhat more efficient than
the preconditioned LSQR.

Since the implementation of the image restoration problem typically requires
the need of formidable data, the blurred and noisy image can be partitioned into
small blocks based on the size of the point spread function and the scheme to
process the image in blocks(each block as a column) is often used to reduce the
memory storage as well as the execution time to achieve the same effects and
results [12]. Collection of image restoration problems for each block image will
be transformed into linear system with s multiple right hand sides(N × s matrix
B) resulting in minimization problem with respect to the Frobenius norm [2, 7],

min
X

{∥HX −B∥2F + λ2 ∥LX∥2F }. (3)

In this work, Gl-CGLS method is suggested and implemented as a solver
of image deblurring problems with Neumann boundary conditions. Numerical
experiments are tested on some blurred images for the purpose of comparing the
computational efficiencies of Gl-CGLS with CGLS and Gl-LSQR. The results
show that Gl-CGLS method is numerically more efficient than others for the
ill-posed problems.

The brief description of the CGLS method is summarized in Section 2. The
Gl-CGLS algorithm is proposed to solve general linear systems with multiple
right-hand sides in Section 3. Section 4 illustrates how the Gl-CGLS method
can be implemented for the image deblurring problems. Numerical experiments
and final remarks are described in Section 4.
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For X and Y in RN×s, we define the inner product < X,Y >F= tr(XTY ),
where tr(Z) denotes the trace of the square matrix Z. The Frobenius norm is
defined by ∥X∥F = (< X,X >F )

1/2.

2. Review of the preconditioned CGLS algorithm

The CGLS method is a special case of Krylov subspace methods and a vari-
ant of conjugate gradient method. The method can be applied to the normal
equations associated with a least squares problem min ∥Hx− b∥2 in the gen-
erated Krylov subspace. But CGLS avoids explicit computation of the cross
product HTH which causes bad performances on ill-conditioned systems. The
method performs a sequential linear searches along HTH-conjugate directions
{p0, p1, . . . , pk−1} that spans the Krylov subspace:

Kk(H
TH,HT b) = span{HT b, (HTH)HT b, . . . , (HTH)k−1HT b}. (4)

The k-th iterate of CGLS solves the least squares problem:

xk = arg min
x∈Kk(HTH,HT b)

1

2
∥Hx− b∥22 . (5)

The approximation xk is determined by xk = xk−1 + αk−1pk−1, where αk−1

solves one dimensional minimization problem:

min
α

∥H(xk−1 + αpk−1)− b∥22 . (6)

The search direction vector pk = sk+βk−1pk−1 is updated with the residual error
sk = HT b−HTHxk and the previous direction pk−1, where the parameter βk−1

is chosen so that pk is HTH-conjugate to all of the previous search directions,
that is, pTkH

THpj = 0, 1 ≤ j ≤ k − 1. CGLS can be described as follows:

Algorithm 1. CGLS

1. x0 is initial guess,
2. Compute r0 = b−Hx0, p0 = s0 = HT r0, γ0 = ∥s0∥22,
3. For k=0, 1, ..., until convergence do

i. qk = Hpk,
ii. Set αk = γk

∥qk∥2
2

,

iii. xk+1 = xk + αkpk,
iv. rk+1 = rk − αkqk,
v. sk+1 = HT rk+1,

vi. γk+1 = ∥sk+1∥22,
vii. Set βk = γk+1

γk
,

viii. pk+1 = sk+1 + βkpk,
4. Enddo

CGLS requires the storage of four vectors x, p, r, and q which are indepen-
dent on the number of iterations. Each iteration costs two matrix-vector prod-
ucts such as one with H and one with HT . It is known that in the absence of
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rounding errors, the iterates of CGLS will be converged to the exact pseudoin-
verse solution in the iterations not more than the number of distinct nonzero
singular values of H [1]. The rate of convergence of CGLS depends on the condi-
tion number and the spectrum of matrix H. LSQR, mathematically equivalent
to CGLS, converges faster since the ∥rk∥ will often exhibit large oscillation for
ill-conditioned matrix H. CGLS, however, can be more efficient for the well con-
ditioned problems. Thus preconditioning can improve the convergence of CGLS
by transforming the problem min ∥Hx− b∥2 into

min
y

∥∥HΩ−1y − b
∥∥
2
, Ωx = y , (7)

where nonsingular N×N matrix Ω is chosen so that HΩ−1 is better conditioned
and has better spectrum than that of H.

The normal equations in factored form for the preconditioned problem (7) are

Ω−THT (HΩ−1y − b) = Ω−THT (Hx− b) = 0.

Multiplying the above equation by Ω−1 leads to

Ω−1Ω−THTHΩ−1y = Ω−1Ω−THT b.

Thus Ω must be chosen so that ΩTΩ is a close approximation to HTH.
The CGLS algorithm can be used for the regularized least squares problems

in the form as

min
x

∥∥∥∥( H
λL

)
x−

(
b
0

)∥∥∥∥
2

. (8)

3. The Gl-CGLS algorithm

The Gl-CGLS can be considered as a variant of the global CG method sug-
gested by D. K. Salkuyeh [10]. Gl-CGLS solves the matrix equations

(HTH + λ2LTL)X = HTB (9)

associated with a Tikhonov regularized problem

min
X

∥∥∥∥( H
λL

)
X −

(
B
O

)∥∥∥∥
F

. (10)

The symmetric coefficient matrix HTH + λ2LTL in (9) can be reduced to tridi-
agonal matrix Tm = tridiag(βi, αi, βi+1) by the global Lanczos algorithm:

Algorithm 2. Global Lanczos algorithm

1. Choose an N × s matrix V1 such that ∥V1∥F = 1.
2. Set β1 = 0 and V0 = 0.
3. For j = 1, ...,m

i. W = (HTH + λ2LTL)Vj − βjVj−1,
ii. αj =< Vj ,W >F ,
iii. W = W − αjVj ,
iv. βj+1 = ∥W∥F ,
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v. Vj+1 = W/βj+1,
4. Enddo

which constructs an F -orthogonal basis V1, V2, . . . , Vm, (i.e., < Vi, Vj >F= 0 for
i ̸= j, < Vi, Vj >F= 1 for i = j ), of the matrix Krylov subspace Km(HTH +
λ2LTL,HTB) with an appropriate V1 related to HTB in the algorithm. The
Global Lanczos algorithm also provides a tridiagonal matrix of order (m+1)×m,

T̃m with entries ti,j =< (HTH+λ2LTL)Vj , Vi >F , i = 1, . . . ,m, j = 1, . . . ,m+1.
Letting S0 = HTB − (HTH + λ2LTL)X0 for some X0, the approximate

solution Xm of (9) in X0 +Km(HTH + λ2LTL,HTB) is given by

Xm = X0 + Vm ∗ ym,

where Vm ∗ ym =
∑m

k=1 ymkVk with Vm =
[
V1 . . . Vm

]
, V1 = S0/ ∥S0∥F ,

and ym = T−1
m ∥S0∥F e1. From the LU factorization of Tm,

Tm = LmUm

= tridiag(λi, 1, 0) tridiag(0, ηi, βi+1)

= lowerbidiag(λi, 1) upperbidiag(ηi, βi+1),

the approximate solution

Xm = X0 + Vm ∗ (U−1
m L−1

m ) ∥S0∥F e1

= X0 + (Vm ∗ U−1
m ) ∗ (L−1

m ∥S0∥F e1)

= X0 + Pm ∗ zm
= Xm−1 + ζmPm,

(11)

where Pm = Vm∗U−1
m =

[
P1 . . . Pm

]
and zm = L−1

m ∥S0∥F e1 =

[
zm−1

ζm

]
.

We can also obtain

Pm =
1

ηm
[Vm − βmPm−1] , (12)

and

λm = βm

ηm−1
, ηm = αm − λmβm.

Proposition 3.1. For m = 0, 1, . . ., let Sm = HTB − (HTH + λ2LTL)Xm be
the residual matrices of matrix normal equations (9) and Pm be the auxiliary
matrices produced by (12). Then residual matrices Sm are F -orthogonal to each
other and the auxiliary matrix Pm are HTH +λ2LTL-conjugate set with respect
to < ·, · >F , i.e. < (HTH + λ2LTL)Pi, Pj >F= 0, i ̸= j.

Proof. From the tridiagonlization of HTH + λ2LTL, we can get

(HTH + λ2LTL)Vm = Vm ∗ Tm + tm+1,m

[
O . . . O Vm+1

]
.



358 SeYoung Oh, SunJoo Kwon and Jae Heon Yun

The residual matrix Sm of matrix normal equations can be written as

Sm = S0 − (HTH + λ2LTL)Vm ∗ ym
= S0 − (Vm ∗ Tm) ∗ ym − tm+1,meTmymVm+1

= S0 − Vm ∗ (Tmym)− tm+1,meTmymVm+1

= −tm+1,meTmymVm+1.

Thus the residual matrices {Sm}m=0,1,... are F -orthogonal to each other.
From the block matrix Pm = Vm ∗U−1

m =
[
P1 . . . Pm

]
, we obtain PT

m =∑m
k=1(U

−1
m )T (:, k)⊗ V T

k and then the following equality holds :

PT
m(HTH + λ2LTL)Pm = (Vm ∗ U−1

m )T (HTH + λ2LTL)(Vm ∗ U−1
m )

=

(
m∑

k=1

(U−1
m )T (:, k)⊗ V T

k

)
Vm ∗ Tm ∗ U−1

m

=

(
m∑

k=1

(U−1
m )T (:, k)⊗ V T

k

)
Vm ∗ TmU−1

m

=

(
m∑

k=1

(U−1
m )T (:, k)⊗ V T

k

)
Vm ∗ Lm.

(13)

From the detail computations of the last matrix expression of the right hand
side of (13), we can drive the F -orthogonality that for i ̸= j, < (HTH +
λ2LTL)Pi, Pj >F= tr(PT

i (HTH+λ2LTL)Pj) = 0 since < Vi, Vj >F= 0. Hence,
the auxiliary matrices {Pm}m=0,1,... are (HTH + λ2LTL)-conjugate set. �

The Gl-CGLS algorithm can be obtained by using this proposition. From the
update relation

Xj+1 = Xj + αjPj ,

the residual matrix of normal matrix must satisfy the recurrence

Sj+1 = Sj − αj(H
TH + λ2LTL)Pj ,

and the next search direction Pj+1 is a linear combination of Sj+1 and Pj ,

Pj+1 = Sj+1 + βjPj .

Thus the F -orthogonality of Sj ’s brings

αj =
< Sj , Sj >F

< (HTH + λ2LTL)Pj , Pj >F

and

βj =
< Sj+1, Sj+1 >F

< Sj , Sj >F
.

The above relations result in the Gl-CGLS algorithm.

Algorithm 3. Gl-CGLS

1. X0 is initial guess,
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2. Compute R0 =

(
B
O

)
−
(

H
λL

)
X0, P0 = S0 =

(
H
λL

)T

R0, γ0 =

< S0, S0 >F ,
3. For k=0, 1, ..., until convergence do

i. Qk =

(
H
λL

)
Pk,

ii. Set αk = γk/< Qk, Qk >F ,
iii. Xk+1 = Xk + αkPk,
iv. Rk+1 = Rk − αkQk,

v. Sk+1 =

(
H
λL

)T

Rk+1,

vi. γk+1 = < Sk+1, Sk+1 >F ,
vii. Set βk = γk+1/γk,
viii. Pk+1 = Sk+1 + βkPk,

4. Enddo

4. Implementations and Numerical Results

4.1. Partitioning and processing of the deblurred image. The deblur-
ring problem (2) is considered as a memory intensive application due to its
insurmountable data. Alternative scheme can be used if the issue of storage
becomes a problem. One way to reduce memory use is to process the image in
small blocks which are its subimages.

We assume that the original image has n2 pixels. To obtain image restoration
problem with multiple right hand sides, we divide the original image to d small
blocks with each size of η × η (η << n), where d is n2/η2. The divided small
blocks are numbered in column-row order. The i-th subimage is denoted by
SIM(i) =

[
xi
·1 . . . xi

·η
]
η×η

, where xi
·j means the j-th column of i-th subim-

age. Let Xi be a vector produced by stacking the columns of SIM(i). For each
i, let Bi be a vector representation of noisy blurred image corresponding to the
i-th block of the original image. Now if we denote two matrices X and B by
X ≡

[
X1 X2 · · · Xd

]
η2×d

and B ≡
[
B1 B2 · · · Bd

]
η2×d

, respectively,

the image restoration problem (2) will be reformulated as Tikhonov regular-
ization problem (3) with respect to F -norm. For computational efficiency and
numerical stability, algorithms for computing Tikhonov solutions can be based
on the formulation (10) and for certain situations the matrix normal equations
(9) is also suited. Since the coefficient matrix of (9) is symmetric positive def-
inite, we turn our attention to the use of Gl-CGLS proposed in the previous
Section 3.

The problem (10) is preconditioned by a preconditioner Ω̂:

min
Y

∥∥∥ĤΩ̂−1Y − B̂
∥∥∥
F

(14)

with Y = Ω̂X, where Ĥ =

(
H
λL

)
and B̂ =

(
B
O

)
.



360 SeYoung Oh, SunJoo Kwon and Jae Heon Yun

In (3), the matrix H has a special structure depending on the choice of bound-
ary conditions. For the Neumann boundary condition reflecting the image like a
mirror with respect to the boundaries, the matrices H and L in (14) will have the
structures of block Toeplitz-plus-Hankel with Toeplitz-plus-Hankel blocks which
can be diagonalized by two dimensional discrete cosine transformation matrix C
[6]. The matrix ĤΩ̂−1 in (14) is to be well conditioned with the preconditioner:

Ω̂ = C∗ΛC = C∗(|ΛH |2 + λ2|ΛL|2)1/2C,
where H ≈ C∗ΛHC and L ≈ C∗ΛLC.

4.2. Numerical experiments. This section deals with the efficiency of pre-
conditioned Gl-CGLS algorithm for the image restoration problem where all
computations are conducted by Matlab environment.

Gl-CGLS and CGLS method are applied to a practical image deblurring prob-
lem with multiple right-hand sides with the Neumann boundary condition. Let
tGl−CGLS and tCGLS denote the CPU time obtained by applying Gl-CGLS for
multiple right-hand side linear systems and CGLS for sequential linear systems
with single right-hand side.

To show how well the points approximate the true image, we investigate
the relative accuracy of the reconstructed image Xrec with respect to the exact

solution X of system (14),
∥X−Xrec∥F

∥X∥F
, and the PSNR(peak signal-to-noise ratio)

values of the recovered images. Especially, PSNR is most commonly used as a
measure of quality of restored image [11]. PSNR for a gray scale image is defined
as :

PSNR = 10 log 10

(
2552

MSE

)
.

Here, MSE is the mean square error for two m×n monochrome images I and J ,
where one of the images is considered as a noisy approximation of the other. It is

defined as MSE(I, J) =
Σi,j(I(i,j)−J(i,j))2

mn . The smaller the relative accuracy and
the bigger the PSNR value gets, the better the approximated image becomes.

For a test, we only considered a spatially invariant point spread function
whose discrete function was chosen from

hi−j, k−l =
1

2πσ2
e−

(i−j)2+(k−l)2

2σ2 , −r ≤ i− j, k − l ≤ r, (15)

where σ is the Gaussian variance. Note that this is called by Gaussian PSF,
and can be used to model aberrations in a lens with finite aperture [4]. In (15),
the Gaussian variance σ was taken as 0.01 and r = 6. Our test used only the
identity matrix as a regularization operator L and λ = 0.008 as regularization
parameter. To minimize edge effects, each subimage has properly overlapped
when the image is divided and patched.

The test images used in our study are the 128 × 128 particle image (Figure
1(a)) and the similar particle image with a size of 256 × 256. The images are
divided into 16 ∼ 256 small block images and then by convolving the PSF with
exact subimages and adding the error normally distributed with zero mean, the
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(a) (b)

(c) (d)

Figure 1. Test image of a particle. (a) Original image; (b)
blurred and noisy image; (c) Restored image by preconditioned
Gl-CGLS; (d) Restored image by preconditioned CGLS.

blurred and noisy image of Figure 1(b) can be constructed. The restored im-
ages by the preconditioned Gl-CGLS and preconditioned CGLS are shown in
Figure 1(c) and Figure 1(d) respectively. For the comparison purpose, the pre-
conditioned Gl-LSQR was also applied to the same images. Each of the blurred
images was restored to achieve the relative accuracies (1.3e− 3 ∼ 7.1e− 3) and
PSNR (49.85 ∼ 64.59) for the three methods as shown in Table 1. Consequently,
the CPU time ratios tCGLS/tGl−CGLS were improved by 5.41 ∼ 17.63. We can
perceive that the Gl-CGLS speeds up for the large number of divided subim-
ages, and restores the degraded images more efficiently than CGLS and even
Gl-LSQR.
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Table 1. Comparison of the restoring results of the degraded
image in Figure 1(b). d is the number of small subimages

Image I (128× 128 particle image)

d Method CPU time Relative accuracy PSNR

162 Gl-CGLS 4.97 1.3e-3 64.54

CGLS 87.63 1.3e-3 64.59
Gl-LSQR 25.88 1.3e-3 64.54

82 Gl-CGLS 9.98 6.9e-3 49.86

CGLS 116.31 6.6e-3 50.23
Gl-LSQR 17.07 6.9e-3 49.86

42 Gl-CGLS 52.79 5.8e-3 51.37
CGLS 285.82 5.8e-3 51.48

Gl-LSQR 38.47 5.8e-3 51.37

Image II (256× 256 particle image)

d Method CPU time Relative accuracy PSNR

162 Gl-CGLS 22.35 7.1e-3 52.86

Gl-LSQR 53.94 7.1e-3 52.86

82 Gl-CGLS 73.34 6.0e-3 54.29
Gl-LSQR 73.75 6.0e-3 54.29

In this study, we proposed the Gl-CGLS algorithm for deblurring noisy images
and compared our approach with CGLS algorithm and Gl-LSQR algorithm. Ex-
perimental results show that when the number of divided subimages increases,
the Gl-CGLS approach can significantly improve the execution times. It is in-
dicating that Gl-CGLS is more efficient than CGLS for the deblurring image
problems.

As final remark, this method can be extended to image mosaicing which has
been developed for the detailed reconstruction of large images by successively
acquiring image patches in a given row-column or column-row order. Our fu-
ture work is to investigate whether Gl-CGLS algorithm is also effective in the
mosaicing techniques.
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