• Title/Summary/Keyword: Ignition Delay time

Search Result 195, Processing Time 0.022 seconds

A Study on the Reliability of the Combustible Properties for Acrylic Acid (아크릴릭산의 연소특성치의 신뢰성 연구)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2015
  • For the reliability of the combustible properties of arylic acid, this study was investigated the explosion limits of acrylic acid in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of acrylic acid by using Setaflash and Pensky-Martens closed-cup testers were experimented in $48^{\circ}C$ and $51^{\circ}C$, respectively. The lower flash points of arylic acid by using Tag and Cleveland open cup testers were experimented in $56^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for acrylic acid. The AIT of acrylic acid was experimented as $417^{\circ}C$. The lower explosion limit(LEL) and the upper explosion limit(UEL) by the measured the lower flash point and the upper flash point of acrylic acid were calculated as 2.2 Vol% and 7.9 Vol%, respectively.

IGNITION OF REACTIVE SOLIDS WITH ROUGH SURFACE BY CONSTANT HEAT FLUX

  • Chae, J.O.;Mokhin, G.N.;Moon, J.I.;Shmelev, V.M.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.11-30
    • /
    • 1995
  • The ignition characteristics of a reactive solid with rough surface by constant heat flux were studied. The geometry of surface was represented by a set of identical protrusions having a shape of wedge based on the block of reactive solid. Several regimes of ignition were found, depending on the ratio of the protrusion length and the depth of the heated layer, formed in course of ignition process: 1) when the substance is ignited as the massive block, and the effect of roughness is not pronounced; 2) when ignited are the individual protrusions; and 3) in the intermediate region between the first two. Critical ignition conditions: ignition time and ignition criterion, are determined for the three regimes. The results are compared with the results for the one-dimensional ignition of the semi-infinite body. It is shown, that the effect of geometry on ignition results in the considerable reduction of ignition delay, and the amount of energy required for the successful ignition is less compared to the one- dimensional case.

  • PDF

Predicting of Fire Characteristics of Flame Retardant Treated Douglas fir Using an Integral Model (적분모델을 이용한 난연처리된 Douglas fir의 화재특성 예측)

  • Park, Hyung-Ju;Kim, Hong;Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.3 s.71
    • /
    • pp.98-104
    • /
    • 2005
  • This study experimentally and theoretically examines the fire characteristics of 100- by 100- by 50-mm samples of flame retardant treated Douglas fir. Samples were exposed to a range of incident heat fluxes 10 to $50kW/m^2$. The time to ignition measurements obtained from the cone heater were used to derive characteristic properties of the materials. A one-dimensional integral model has been used to predict the, time to ignition, critical heat flux and ignition temperature of samples. Ignition data and best-fit curves confirm ${{\dot{q}}_i}^{'}{\rightarrow}{{\dot{q}}_{cr}^{'}\;then\;t_{ig}{\rightarrow}{\infty}$ and when ${{\dot{q}}_i}^'{\gg}{{\dot{q}}_{cr}^'\;then\;t_{ig}{\rightarrow}0$. And Ignition of flame retardant treated samples occurred not at incident heat flux of bellow $10kW/m^2.$. By a one-dimensional integral model, the critical heat flux of each samples was predicted $10.21kW/m^2,\;11.82kW/m^2,\;and\;14.16kW/m^2$ for the D-N, D-F2, and D-F4, respectively. In ignition temperature of each samples, flame retardant treated samples were measured high about $50^{\circ}C$ than non-treated samples. Water-soluble flame retardant used in this study finds out more effect in delay of time to ignition when incident heat flux is low than high.

A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers (대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구)

  • Kim, Jae-Heon;Lee, Soo-Gab;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

Re-ignition System using Vacuum Triggered Gap-switch for Synthetic Breaking Test

  • Park Seung-Jae;Suh Yoon-Taek;Kim Dae-Won;Kim Maeng-Hyun;Song Won-Pyo;Koh Hee-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.145-151
    • /
    • 2005
  • The synthetic breaking test method was developed to evaluate the breaking performance of ultra high-voltage circuit breaker and made up of two independent circuits; current source circuit and voltage source circuit. In application of this test method, it is necessary to extend the arc of the test breaker. So, the new re-ignition system using VTGS (Vacuum Triggered Gap-Switch) was constructed to improve the efficiency and reliability of this test. In this re-ignition system, VTGS operates in high vacuum state of $5{\time}10^{17}$torr and control system consists of the triggering device and the air M-G (Motor-Generator). This re-ignition system showed the operating characteristics, such as delay time ($t_d$) and jitter time ($t_j$ not exceeding 5us and 1us respectively, and had the operating voltage of $25\~150kVdc$ at the gap distance of 24mm.

The Study of Combustion, Ignition and Safety Characteristics of HTPE Insensitive Propellant (HTPE 둔감추진제 연소/점화/안전도 특성 연구)

  • Yoo, Ji-Chang;Jung, Jung-Yong;Kim, Chang-Kee;Min, Byung-Sun;Ryu, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.351-355
    • /
    • 2011
  • In this study, 2 kinds of HTPE insensitive propellants composed of HTPE/BuNENA binder, AP, AN and Al were investigated for combustion characteristics, ignition delay time, sensitivity and insensitive properties compared with HTPB propellant. HTPE propellant showed almost same sensitivity results as HTPB propellant, showed 2~3 times higher value than the value of HTPB propellant, ignition delay time respectively, and met the standard criteria, while HTPB propellant failed.

  • PDF

Crossover Temperature and Ignition Delay Time of Diluted Hydrogen-Air Mixtures (희석된 수소-공기 혼합기의 크로스오버 온도와 점화지연시간)

  • Dong Youl, Lee;Eui Ju, Lee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.18-24
    • /
    • 2022
  • Hydrogen is a clean fuel and is used in many applications in power systems such as fuel cells. It has unique properties such as wide flammability, high burning velocity, and difficulty to liquefy, which lead to critical safety issues. Fire and explosion are the most frequently occurring accidents and one of the major reasons is autoignition. In the ignition process, the chemistry of hydrogen combustion depends mainly on radical pools, and the temperature at which chain-branching and terminating rates are equal is called the crossover temperature. This study addresses the homogeneous autoignition of diluted hydrogen-air mixtures to investigate the effects of dilution on the crossover temperature to prevent explosions in the future. The new criterion for crossover temperature is introduced by only hydrogen radicals to adjust more simply. The detailed calculations indicate that the crossover temperatures are low at high dilutions of carbon dioxide and nitrogen because the concentrations of active radicals are reduced when an inert gas is added. This result is expected to contribute to hydrogen safety and realize a hydrogen society in the future.

Numerical Analysis of Chemical Characteristics of Homogeneous CO/H2/NO in Pressurized Oxy-Fuel Combustion (가압순산소 연소 조건에서 균일 CO/H2/NO의 화학적 특성에 관한 해석 연구)

  • KIM, DONGHEE;AHN, HYUNGJUN;HUH, KANG Y.;LEE, YOUNGJAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.320-329
    • /
    • 2019
  • This study was performed by the numerical approach to investigate chemical behaviors of homogeneous syngas ($CO/H_2$) with nitric monoxide (NO) in pressurized oxy-fuel conditions. Hydrogen had a dominant effect to the ignition delay time of syngas due to the fast chemistry of its oxidation. Combustion was promoted by NO at the low temperature region. It was by the additional heat release through NO oxidation and production and consumption of major radicals related to the ignition. Two stage ignition behavior was shown in the pressurized condition by the accumulation of $H_2O_2$ produced from $HO_2$ radical. Additional NO oxidation was induced by the pressurized oxy-fuel condition to produce $NO_2$.

Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition (과산화수소 촉매 분해를 이용한 파라핀 및 PE 하이브리드 로켓의 자연 점화 특성)

  • An, Sung-Yong;Jin, Jung-Kun;Jung, Eun-Sang;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.48-56
    • /
    • 2009
  • The auto-ignition tests of hybrid rockets with the concentrated hydrogen peroxide as an oxidizer were presented. Auto-ignition was successfully demonstrated by injecting decomposed gases from $H_2O_2$ into paraffin or polyethylene fuels. In addition, restart and instant ignition were realized with this rocket. For stable combustion, a higher $L^*$ value was required for the paraffin combustion compared with PE. On the other hand, much faster response time was demonstrated in case of a paraffin, which was 13 and 30 ms at ignition delay and rise time respectively.

Auto-ignition Characteristics of Paraffin and PE Hybrid Rocket with $H_2O_2$ Catalytic Decomposition (과산화수소 촉매 분해를 이용한 하이브리드 로켓 자연 점화)

  • An, Sung-Yong;Jin, Jung-Kun;Jung, Eun-Sang;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.499-502
    • /
    • 2009
  • The auto-ignition tests of hybrid rockets with the concentrated hydrogen peroxide as an oxidizer were presented. Auto-ignition, restartability, and instant ignition were successfully demonstrated by injecting decomposed gases from $H_2O_2$ into paraffin or polyethylene fuels. In addition, much faster response time was demonstrated in case of a paraffin, which was 13 and 30 ms at ignition delay and rise time respectively.

  • PDF