DOI QR코드

DOI QR Code

Numerical Analysis of Chemical Characteristics of Homogeneous CO/H2/NO in Pressurized Oxy-Fuel Combustion

가압순산소 연소 조건에서 균일 CO/H2/NO의 화학적 특성에 관한 해석 연구

  • 김동희 (한국생산기술연구원) ;
  • 안형준 (포항산업과학연구원 에너지환경연구소) ;
  • 허강열 (포항공과대학교 기계공학과) ;
  • 이영재 (한국생산기술연구원)
  • Received : 2019.07.30
  • Accepted : 2019.08.31
  • Published : 2019.08.31

Abstract

This study was performed by the numerical approach to investigate chemical behaviors of homogeneous syngas ($CO/H_2$) with nitric monoxide (NO) in pressurized oxy-fuel conditions. Hydrogen had a dominant effect to the ignition delay time of syngas due to the fast chemistry of its oxidation. Combustion was promoted by NO at the low temperature region. It was by the additional heat release through NO oxidation and production and consumption of major radicals related to the ignition. Two stage ignition behavior was shown in the pressurized condition by the accumulation of $H_2O_2$ produced from $HO_2$ radical. Additional NO oxidation was induced by the pressurized oxy-fuel condition to produce $NO_2$.

Keywords

References

  1. M. Okawa, N. Kimura, T. Kiga, S. Takano, K. Arai, and M. Kato, "Trial Design for a $CO_2$ Recovery Power Plant by Burning Pulverized Coal in $O_2CO_2$", Energy Convers. Mgmt., Vol. 38, 1997, pp. 123-127, doi: https://doi.org/10.1016/S0196-8904(96)00257-9.
  2. K. Anderson and F. Johnson, "Process Evaluation of an 865 $MW_e$ Lignite Fired $O_2/CO_2$ Power Plant", Energy Convers. Mgmt., Vol. 47, No. 18-19, 2006, pp. 3487-3498, doi: https://doi.org/10.1016/j.enconman.2005.10.017.
  3. E. Kakaras, A. Koumanakos, A. Doukelis, D. Giannakopoulos, and L. Vorrias, "Simulation of a Greenfield Oxyfuel Lignite-fired Power Plant", Energy Convers. Mgmt., Vol. 48, No. 11, 2007, pp. 2879-2887, doi: https://doi.org/10.1016/j.enconman.2007.07.017.
  4. S. Rezvani, Y. Huang, D. McIlveen-Wright, N. Hewitt, and Y. Wang, "Comparative Assessment of Sub-critical versus Advanced Super-critical Oxyfuel Fired PF Boilers with CO2 Sequestration Facilities", Fuel, Vol. 86, No. 14, 2007, pp. 2134-2143, doi: https://doi.org/10.1016/j.fuel.2007.01.027.
  5. P. A. Bouillon, S. Hennes, and C. Mahieux, "ECO2: Post-combustion or Oxyfuel-A Comparison Between Coal Power Plants with Integrated $CO_2$ Capture", Energy Procedia, Vol. 1, No. 1, 2009, pp. 4015-4022, doi: https://doi.org/10.1016/j.egypro.2009.02.207.
  6. K. Lee, S. Kim, S. Choi, and T. Kim, "Performance Evaluation of an Oxy-coal-fired Power Plant", J. Therm. Sci. Tech., Vol. 4, No. 3, 2009, pp. 400-407, doi: https://doi.org/10.1299/jtst.4.400.
  7. J. Hong, G. Chaudhry, J. G. Brisson, R. Field, M. Gazzino, and A. F. Ghoniem, "Analysis of Oxy-fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor", Energy, Vol. 34, No. 9, 2009, pp. 1332-1340, doi: https://doi.org/10.1016/j.energy.2009.05.015.
  8. R. Soundararajan and T. Gundersen, "Coal based Power Plants Using Oxy-combustion for $CO_2$ Capture: Pressurized Coal Combustion to Reduce Capture Penalty", Applied Thermal Engineering, Vol. 61, No. 1, 2013, pp. 115-122, doi: https://doi.org/10.1016/j.applthermaleng.2013.04.010.
  9. H. Zebian, M. Gazzino, and A. Mitos, "Multi-Variable Optimization of Pressurized Oxy-coal Combustion", Energy, Vol. 38, No. 1, 2012, pp. 37-57, doi: https://doi.org/10.1016/j.energy.2011.12.043.
  10. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, V. V. Lissianski, and Z. Qin, "WHAT'S NEW IN GRI-Mech 3.0". Retrieved from http://combustion.berkeley.edu/gri-mech/version30/text30.html#whatisnew.
  11. Z. Chen, P. Zhang, Y. Yang, M. J. Brear, X. He, and Z. Wang, "Impact of Nitric Oxide (NO) on n-heptane Autoignition in a Rapid Compression Machine", Combust. Flame, Vol. 186, 2017, pp. 94-104, doi: https://doi.org/10.1016/j.combustflame.2017.07.036.
  12. H. Ajrouche, O. Nilaphai, C. Hespel, and F. Foucher, "Impact of Nitric Oxide on n-heptane and n-dodecane Autoignition in a New High-pressure and High-temperature Chamber", Proc. Combust. Inst., Vol. 37, No. 3, 2019, pp. 3319-3326, doi: https://doi.org/10.1016/j.proci.2018.07.102.
  13. Z. Serinyel, L. Le Moyne, and P. Guibert, "Homogeneous Charge Compression Ignition as an Alternative Combustion Mode for the Future of Internal Combustion Egines", Int. J. Vehicle Design, Vol. 44, No. 1-2, 2007, pp. 22-40, doi: https://doi.org/10.1504/IJVD.2007.013217.
  14. X. Fu and S. K. Aggarwal, "Two-stage ignition and NTC phenomenon in diesel engines", Fuel, Vol. 144, 2015, pp. 188-196, doi: https://doi.org/10.1016/j.fuel.2014.12.059.
  15. S. Ajari, F. Normann, K. Andersson, and F. Johnssom, "Reduced Mechanism for Nitrogen and Sulfur Chemistry in Pressurized Flue Gas Systems", Ind. Eng. Chem. Res., Vol. 55, No. 19, 2016, pp. 5514-5525, doi: https://doi.org/10.1021/acs.iecr.5b04670.
  16. S. Ajari, F. Normann, and K. Andersson, "Evaluation of Operating and Design Parameters of Pressurized Flue Gas Systems w ith Integrated Removal of NOx and SOx", Energy Fuels, Vol. 33, No. 4, 2019, pp. 3339-3348, doi: https://doi.org/10.1021/acs.energyfuels.8b03973.