Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.4.320

Numerical Analysis of Chemical Characteristics of Homogeneous CO/H2/NO in Pressurized Oxy-Fuel Combustion  

KIM, DONGHEE (Korea Institute of Industrial Technology)
AHN, HYUNGJUN (Research Institute of Industrial Science & Technology)
HUH, KANG Y. (Pohang University of Science and Technology)
LEE, YOUNGJAE (Korea Institute of Industrial Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.4, 2019 , pp. 320-329 More about this Journal
Abstract
This study was performed by the numerical approach to investigate chemical behaviors of homogeneous syngas ($CO/H_2$) with nitric monoxide (NO) in pressurized oxy-fuel conditions. Hydrogen had a dominant effect to the ignition delay time of syngas due to the fast chemistry of its oxidation. Combustion was promoted by NO at the low temperature region. It was by the additional heat release through NO oxidation and production and consumption of major radicals related to the ignition. Two stage ignition behavior was shown in the pressurized condition by the accumulation of $H_2O_2$ produced from $HO_2$ radical. Additional NO oxidation was induced by the pressurized oxy-fuel condition to produce $NO_2$.
Keywords
Syngas; NOx; Pressurized oxy-fuel combustion; Chemical kinetics; Ignition delay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Okawa, N. Kimura, T. Kiga, S. Takano, K. Arai, and M. Kato, "Trial Design for a $CO_2$ Recovery Power Plant by Burning Pulverized Coal in $O_2CO_2$", Energy Convers. Mgmt., Vol. 38, 1997, pp. 123-127, doi: https://doi.org/10.1016/S0196-8904(96)00257-9.   DOI
2 K. Anderson and F. Johnson, "Process Evaluation of an 865 $MW_e$ Lignite Fired $O_2/CO_2$ Power Plant", Energy Convers. Mgmt., Vol. 47, No. 18-19, 2006, pp. 3487-3498, doi: https://doi.org/10.1016/j.enconman.2005.10.017.   DOI
3 E. Kakaras, A. Koumanakos, A. Doukelis, D. Giannakopoulos, and L. Vorrias, "Simulation of a Greenfield Oxyfuel Lignite-fired Power Plant", Energy Convers. Mgmt., Vol. 48, No. 11, 2007, pp. 2879-2887, doi: https://doi.org/10.1016/j.enconman.2007.07.017.   DOI
4 S. Rezvani, Y. Huang, D. McIlveen-Wright, N. Hewitt, and Y. Wang, "Comparative Assessment of Sub-critical versus Advanced Super-critical Oxyfuel Fired PF Boilers with CO2 Sequestration Facilities", Fuel, Vol. 86, No. 14, 2007, pp. 2134-2143, doi: https://doi.org/10.1016/j.fuel.2007.01.027.   DOI
5 P. A. Bouillon, S. Hennes, and C. Mahieux, "ECO2: Post-combustion or Oxyfuel-A Comparison Between Coal Power Plants with Integrated $CO_2$ Capture", Energy Procedia, Vol. 1, No. 1, 2009, pp. 4015-4022, doi: https://doi.org/10.1016/j.egypro.2009.02.207.   DOI
6 K. Lee, S. Kim, S. Choi, and T. Kim, "Performance Evaluation of an Oxy-coal-fired Power Plant", J. Therm. Sci. Tech., Vol. 4, No. 3, 2009, pp. 400-407, doi: https://doi.org/10.1299/jtst.4.400.   DOI
7 J. Hong, G. Chaudhry, J. G. Brisson, R. Field, M. Gazzino, and A. F. Ghoniem, "Analysis of Oxy-fuel Combustion Power Cycle Utilizing a Pressurized Coal Combustor", Energy, Vol. 34, No. 9, 2009, pp. 1332-1340, doi: https://doi.org/10.1016/j.energy.2009.05.015.   DOI
8 R. Soundararajan and T. Gundersen, "Coal based Power Plants Using Oxy-combustion for $CO_2$ Capture: Pressurized Coal Combustion to Reduce Capture Penalty", Applied Thermal Engineering, Vol. 61, No. 1, 2013, pp. 115-122, doi: https://doi.org/10.1016/j.applthermaleng.2013.04.010.   DOI
9 H. Zebian, M. Gazzino, and A. Mitos, "Multi-Variable Optimization of Pressurized Oxy-coal Combustion", Energy, Vol. 38, No. 1, 2012, pp. 37-57, doi: https://doi.org/10.1016/j.energy.2011.12.043.   DOI
10 G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr, V. V. Lissianski, and Z. Qin, "WHAT'S NEW IN GRI-Mech 3.0". Retrieved from http://combustion.berkeley.edu/gri-mech/version30/text30.html#whatisnew.
11 Z. Chen, P. Zhang, Y. Yang, M. J. Brear, X. He, and Z. Wang, "Impact of Nitric Oxide (NO) on n-heptane Autoignition in a Rapid Compression Machine", Combust. Flame, Vol. 186, 2017, pp. 94-104, doi: https://doi.org/10.1016/j.combustflame.2017.07.036.   DOI
12 H. Ajrouche, O. Nilaphai, C. Hespel, and F. Foucher, "Impact of Nitric Oxide on n-heptane and n-dodecane Autoignition in a New High-pressure and High-temperature Chamber", Proc. Combust. Inst., Vol. 37, No. 3, 2019, pp. 3319-3326, doi: https://doi.org/10.1016/j.proci.2018.07.102.   DOI
13 S. Ajari, F. Normann, and K. Andersson, "Evaluation of Operating and Design Parameters of Pressurized Flue Gas Systems w ith Integrated Removal of NOx and SOx", Energy Fuels, Vol. 33, No. 4, 2019, pp. 3339-3348, doi: https://doi.org/10.1021/acs.energyfuels.8b03973.   DOI
14 Z. Serinyel, L. Le Moyne, and P. Guibert, "Homogeneous Charge Compression Ignition as an Alternative Combustion Mode for the Future of Internal Combustion Egines", Int. J. Vehicle Design, Vol. 44, No. 1-2, 2007, pp. 22-40, doi: https://doi.org/10.1504/IJVD.2007.013217.   DOI
15 X. Fu and S. K. Aggarwal, "Two-stage ignition and NTC phenomenon in diesel engines", Fuel, Vol. 144, 2015, pp. 188-196, doi: https://doi.org/10.1016/j.fuel.2014.12.059.   DOI
16 S. Ajari, F. Normann, K. Andersson, and F. Johnssom, "Reduced Mechanism for Nitrogen and Sulfur Chemistry in Pressurized Flue Gas Systems", Ind. Eng. Chem. Res., Vol. 55, No. 19, 2016, pp. 5514-5525, doi: https://doi.org/10.1021/acs.iecr.5b04670.   DOI