• Title/Summary/Keyword: Idempotent

Search Result 150, Processing Time 0.025 seconds

FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES

  • Beachy, John A.;Medina-Barcenas, Mauricio
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1177-1193
    • /
    • 2020
  • Fully prime rings (in which every proper ideal is prime) have been studied by Blair and Tsutsui, and fully semiprime rings (in which every proper ideal is semiprime) have been studied by Courter. For a given module M, we introduce the notions of a fully prime module and a fully semiprime module, and extend certain results of Blair, Tsutsui, and Courter to the category subgenerated by M. We also consider the relationship between the conditions (1) M is a fully prime (semiprime) module, and (2) the endomorphism ring of M is a fully prime (semiprime) ring.

ABELIAN PROPERTY CONCERNING FACTORIZATION MODULO RADICALS

  • Chae, Dong Hyeon;Choi, Jeong Min;Kim, Dong Hyun;Kim, Jae Eui;Kim, Jae Min;Kim, Tae Hyeong;Lee, Ji Young;Lee, Yang;Lee, You Sun;Noh, Jin Hwan;Ryu, Sung Ju
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.737-750
    • /
    • 2016
  • In this note we describe some classes of rings in relation to Abelian property of factorizations by nilradicals and Jacobson radical. The ring theoretical structures are investigated for various sorts of such factor rings which occur in the process.

THE APPLICATIONS OF ADDITIVE MAP PRESERVING IDEMPOTENCE IN GENERALIZED INVERSE

  • Yao, Hongmei;Fan, Zhaobin;Tang, Jiapei
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.541-547
    • /
    • 2008
  • Suppose R is an idempotence-diagonalizable ring. Let n and m be two arbitrary positive integers with $n\;{\geq}\;3$. We denote by $M_n(R)$ the ring of all $n{\times}n$ matrices over R. Let ($J_n(R)$) be the additive subgroup of $M_n(R)$ generated additively by all idempotent matrices. Let ($D=J_n(R)$) or $M_n(R)$. In this paper, by using an additive idem potence-preserving result obtained by Coo (see [4]), I characterize (i) the additive preservers of tripotence from D to $M_m(R)$ when 2 and 3 are units of R; (ii) the additive preservers of inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses, {1, 2}-inverses) from $M_n(R)$ to $M_n(R)$ when 2 and 3 are units of R.

  • PDF

f-CLEAN RINGS AND RINGS HAVING MANY FULL ELEMENTS

  • Li, Bingjun;Feng, Lianggui
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.247-261
    • /
    • 2010
  • An associative ring R with identity is called a clean ring if every element of R is the sum of a unit and an idempotent. In this paper, we introduce the concept of f-clean rings. We study various properties of f-clean rings. Let C = $\(\array{A\;V\\W\;B}\)$ be a Morita Context ring. We determine conditions under which the ring C is f-clean. Moreover, we introduce the concept of rings having many full elements. We investigate characterizations of this kind of rings and show that rings having many full elements are closed under matrix rings and Morita Context rings.

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

ON g(x)-INVO CLEAN RINGS

  • El Maalmi, Mourad;Mouanis, Hakima
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.455-468
    • /
    • 2020
  • An element in a ring R with identity is called invo-clean if it is the sum of an idempotent and an involution and R is called invoclean if every element of R is invo-clean. Let C(R) be the center of a ring R and g(x) be a fixed polynomial in C(R)[x]. We introduce the new notion of g(x)-invo clean. R is called g(x)-invo if every element in R is a sum of an involution and a root of g(x). In this paper, we investigate many properties and examples of g(x)-invo clean rings. Moreover, we characterize invo-clean as g(x)-invo clean rings where g(x) = (x-a)(x-b), a, b ∈ C(R) and b - a ∈ Inv(R). Finally, some classes of g(x)-invo clean rings are discussed.

ON JORDAN AND JORDAN HIGHER DERIVABLE MAPS OF RINGS

  • Liu, Lei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.957-972
    • /
    • 2020
  • Let 𝓡 be a 2-torsion free unital ring containing a non-trivial idempotent. An additive map 𝛿 from 𝓡 into itself is called a Jordan derivable map at commutative zero point if 𝛿(AB + BA) = 𝛿(A)B + B𝛿(A) + A𝛿(B) + 𝛿(B)A for all A, B ∈ 𝓡 with AB = BA = 0. In this paper, we prove that, under some mild conditions, each Jordan derivable map at commutative zero point has the form 𝛿(A) = 𝜓(A) + CA for all A ∈ 𝓡, where 𝜓 is an additive Jordan derivation of 𝓡 and C is a central element of 𝓡. Then we generalize the result to the case of Jordan higher derivable maps at commutative zero point. These results are also applied to some operator algebras.

DERIVATIONS OF A WEYL TYPE NON-ASSOCIATIVE ALGEBRA ON A LAURENT EXTENSTION

  • Choi, Seul-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.627-634
    • /
    • 2006
  • A Weyl type algebra is defined in the book ([4]). A Weyl type non-associative algebra $\={WP_{m,n,s}}$ and its restricted sub-algebra $\={WP_{m,n,s_{\gamma}}}$ are defined in various papers ([1], [12], [3], [11]). Several authors 0nd all the derivations of an associative (Lie or non-associative) algebra in the papers ([1], [2], [12], [4], [6], [11]). We find all the non-associative algebra derivations of the non-associative algebra $\={WP_{0,2,0_B}$, where $B=\{{\partial}_0,\;{\partial}_1,\;{\partial}_2,\;{\partial}_{12},\;{\partial}^2_1,\;{\partial}^2_2\}$.

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.

A STRUCTURE OF NONCENTRAL IDEMPOTENTS

  • Cho, Eun-Kyung;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Seo, Yeon Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.25-40
    • /
    • 2018
  • We focus on the structure of the set of noncentral idempotents whose role is similar to one of central idempotents. We introduce the concept of quasi-Abelian rings which unit-regular rings satisfy. We first observe that the class of quasi-Abelian rings is seated between Abelian and direct finiteness. It is proved that a regular ring is directly finite if and only if it is quasi-Abelian. It is also shown that quasi-Abelian property is not left-right symmetric, but left-right symmetric when a given ring has an involution. Quasi-Abelian property is shown to do not pass to polynomial rings, comparing with Abelian property passing to polynomial rings.