• 제목/요약/키워드: ITO etching

검색결과 66건 처리시간 0.028초

Reactive Ion Etching에 의한 ITO/반도체 및 ITO/BaTiO3 구조의 선택적 에칭 특성 (Selective etching characteristics of ITO/semiconductor and ITO/BaTiO3 structures by reactive ion ethcing)

  • 한일기;이윤희;김회종;이석;오명환;이정일;김선호;강광남;박홍이
    • 전자공학회논문지A
    • /
    • 제32A권1호
    • /
    • pp.152-158
    • /
    • 1995
  • Eteching characteristics of the Indium Tin Oxide (ITO), which is transparent conductor, was investigated with CH4/H2 and Ar as etching gases for the Reactive Ion Etching (RIE). With CH4/H2 for the etching gas, the highly selective etching characteristics for the ITO on GaAs was obtained. It was examined that the dominant etching parameter for the selective etchning of ITO on GaAs structure was the chamber pressure. But, the etching selectivity for ITO on InP was poor eventhough we tried systematic etching. RIE etching conditins using CH4/H2 gas was limited due to the formation of polymer on the substrates. In the case of Ar gas for the reactive gas, the selectivity of ITO on BaTiO3 was above 10. The etch rete of ITO was more sensitive to the etching parameters than that of BaTiO3, which was almost constant with different etching parameters.

  • PDF

대기압 저온 플라스마에 의한 ITO(Indium Tin Oxide)박막 식각의 수소(H$_2$)효과 (Effect of Hydrogen in ITO(Indium Tin Oxide) Thin Films Etching by Low Temperature Plasma at Atmospheric Pressure)

  • 이봉주
    • 대한전자공학회논문지SD
    • /
    • 제39권8호
    • /
    • pp.12-16
    • /
    • 2002
  • 산화인듐(ITO)박막은 대기압 저온 플라스마에 의해 식각이 가능하다는 것을 확인했다. 식각은 수소유량 4 sccm에서 가장 깊게 발생하여, 120 /min를 나타내었다. 식각속도는 Hα*의 발광강도와 대응하였다. ITO박막의 식각 메커니즘은 Hα*에 의해 환원이 된후, 남게 된 금속 화합물은 CH*과 반응하여 기판으로부터 이탈한다고 생각된다. 식각은 식각시간 50초 이상에서부터, 기판온도 145℃ 이상부터 발생하기 시작하였다. 활성화 에너지는 Arrehenius plots으로부터 0.16eV(3.75kcal/mole)를 얻었다

대면적 플라즈마 소스에서의 ITO 식각균일도 향상 (Improvement of ITO etching uniformity in a large area plasma source)

  • 김진우;조수범;김봉주;박세근;오범환;이종근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel $2{\times}2$ ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with $CH_4$ gas chemistry is optimized with the DOE (Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on $350{\times}300mm$ substrate at the 50Hz magnetization frequency of the E-ICP operation technique,

  • PDF

스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율 (The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition)

  • 허창우
    • 한국정보통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1465-1468
    • /
    • 2010
  • 습식 식각은 식각용액으로서 화학용액을 사용하는 공정으로 반응물이 기판표면에서 화학반응을 일으켜 표면을 식각하는 과정이다. 습식 식각 시 수${\mu}m$의 해상도를 얻기 위해서는 그 부식액의 조성이나, 에칭시간, 부식액의 온도 등을 고려하여야 한다. 본 실험에서 사용한 금속은 Cr, Al, ITO 로 모두 DC sputter 방법을 사용해서 증착하여 사용하였다. Cr박막은 $1300{\AA}$ 정도의 두께를 사용하였고, ITO (Indium Tin Oxide) 박막은 가시광 영역에서 투명하고 (80% 이상의 transmittance), 저저항 (Sheet Resistance : $50\;{\Omega}/sq$ 이하) 인 박막을 사용하였으며, 신호선으로 주로 사용되는 Al등의 증착조건에 따른 wet etching 특성을 조사하였다.

플렉서블 기판 전/후면에서의 레이저를 이용한 ITO/Ag/ITO 전극층의 식각 특성 (Laser Etching Characteristics of ITO/Ag/ITO Conductive Films on Forward/Reverse Sides of Flexible Substrates)

  • 남한엽;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.707-711
    • /
    • 2016
  • ITO/Ag/ITO conductive films on PET (polyethylene terephthalate) was etched by a Q-switched diode-pumped neodymiun-doped yttrium vanadate (Nd:YVO4, ${\lambda}=1064nm$) laser. During the laser direct etching, the laser beam was incident on the two different directions of PET and the etching patterns were investigated and analyzed. At a lower repetition rate of laser pulse, the larger laser etched patterns were obtained by laser beam incident on reverse side of PET substrate. On the contrary, at a higher repetition rate, it was possible to find the larger etched patterns in case of the laser beam incidence on forward side of PET substrate. For the laser beam incidence on reverse side, the laser beam is expected to be transferred and scattered through the PET substrate and the laser beam energy is thought to be dependent on the etch laser pulse beam energy.

대면적 플라즈마 소스에서의 ITO 식각균일도 향상 (Improvement of 170 etching uniformity in a large area plasma source)

  • 김진우;조수범;김봉주;박세근;오범환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.145-148
    • /
    • 2001
  • A large area plasma source using parallel 2x2 ICP antennas showed improved etching uniformity by the E-ICP operation. ITO etching process with CH$_4$ gas chemistry is optimized with the DOE(Design of Experiment) based on Taguchi method. Various methane ratios in methane and argon mixture are compared to confirm the effect of polymerization. The analysis shows that the effect of bias power is the largeset. We obtained higher ITO etching rate and better uniformity on 350x300mm substrate at the 50Hz magnetization frequency of the E-ICP operation technique.

  • PDF

Poly-Si Cell with Preferential Grain Boundary Etching and ITO Electrode

  • Lim, D.G.;Lee, S.E.;Park, S.H.;Yi, J.
    • 태양에너지
    • /
    • 제19권3호
    • /
    • pp.125-131
    • /
    • 1999
  • This paper deals with a novel structure of poly-Si solar cell. A grain boundary(GB) of poly-Si acts as potential barrier and recombination center for photo-generated carriers. To reduce unwanted side effects at the GB of poly-Si, we employed physical GB removal of poly-Si using chemical solutions. Various chemical etchants such as Sirtl, Yang, Secco, and Schimmel were investigated for the preferential GB etching. Etch depth about 10 ${\mu}m$ was achieved by a Schimmel etchant. After a chemical etching of poly-Si, we used $POCl_3$ for emitter junction formation. This paper used an easy method of top electrode formation using a RF sputter grown ITO film. ITO films with thickness of 300 nm showed resistivity of $1.26{\times}10^{-4}{\Omega}-cm$ and overall transmittance above 80%. Using a preferential GB etching and ITO top electrode, we developed a new fabrication procedure of poly-Si solar cells. Employing optimized process conditions, we were able to achieve conversion efficiency as high as 16.6% at an input power of 20 $mW/cm^2$. This paper investigates the effects of process parameters: etching conditions, ITO deposition factors, and emitter doping densities in a poly-Si cell fabrication procedure.

  • PDF

ITO 표면 처리방법에 따른 OLED의 전기적 특성 (The Electrical Properties of OLED by surface Etching methode of ITO)

  • 양명학;기현철;민용기;홍경진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.455-456
    • /
    • 2008
  • In this study, we report that an electrical properties of OLEDs was investigated by the surface etching method of ITO Layer. The electrical properties of OLEDs was measured by IVL and optical properties by EL spectrum. The fundamental structure of OLEDs was ITO anode/TPD(400$\breve{A}$)/$Alq_3(600\breve{A})$/LiF(5$\breve{A}$)/Al(1200$\breve{A}$) cathode. The threshold voltage was low value according to the low resistance of surface. The luminance was increased by decreased surface resistance.

  • PDF

대향식 스퍼터링법으로 증착된 ITO 양극 위에 제작된 OLED 성능 (Performance of OLED Fabricated on the ITO Deposited by Facing Target Sputtering)

  • 윤철;김상호
    • 한국표면공학회지
    • /
    • 제41권5호
    • /
    • pp.199-204
    • /
    • 2008
  • Indium tin oxide (ITO) has been commonly used as an anode for organic light emitting diode (OLED), because of its relatively high work function, high transmittance, and low resistance. The ITO was mostly deposited by capacitive type DC or RF sputtering. In this study we introduced a new facing target sputtering method. On applying this new sputtering method, the effect of fundamental deposition parameters such as substrate heating and post etching were investigated in relation to the resultant I-V-L characteristics of OLED. Three kinds of ITOs deposited at room temperature, at $400^{\circ}C$ and at $400^{\circ}C$ with after surface modification by $O_2$ plasma etching were compared. The OLED on ITO deposited with substrate heating and followed by etching showed better I-V-L characteristics, which starts to emit light at 4 volts and has luminescence of $65\;cd/m^2$ at 9 volts. The better I-V-L characteristics were ascribed to the relevant surface roughness with uniform micro-extrusions and to the equi-axed micromorphology of ITO surface.

ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성 (Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device)

  • 이봉근;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF