• Title/Summary/Keyword: IT module

Search Result 5,078, Processing Time 0.041 seconds

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

SMA-driven Biomimetic Finger Module for Lightweight Hand Prosthesis (경량 의수용 SMA 구동식 생체모방 손가락 모듈)

  • Jung, Sung-Yoon;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.69-75
    • /
    • 2012
  • This paper proposes a biomimetic finger module to be used in a lightweight hand prosthesis. The finger module consists of finger skeleton and an actuator module driven by SMA (Shape Memory Alloy). The prototype finger module can perform flexion and extension motions; finger flexion is driven by a contraction force of SMA, but it is extended by an elastic force of an extension spring inserted into the finger skeleton. The finger motions are controlled by feedback of electric resistance of SMA because the finger module has no sensors to measure length and angle. Total weight of a prototype finger module is 30g. In experiments the finger motions and finger grip force are tested and compared with simulation results when a constant contraction force of SMA is given. The experimental results show that the proposed SMA-driven finger module is feasible to the lightweight hand prosthesis.

MODULE AMENABILITY AND MODULE ARENS REGULARITY OF WEIGHTED SEMIGROUP ALGEBRAS

  • Asgari, Gholamreza;Bodaghi, Abasalt;Bagha, Davood Ebrahimi
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.743-755
    • /
    • 2019
  • For every inverse semigroup S with subsemigroup E of idempotents, necessary and sufficient conditions are obtained for the weighted semigroup algebra $l^1(S,{\omega})$ and its second dual to be $l^1(E)$-module amenble. Some results for the module Arens regularity of $l^1(S,{\omega})$ (as an $l^1(E)$-module) are found. If S is either of the bicyclic inverse semigroup or the Brandt inverse semigroup, it is shown that $l^1(S,{\omega})$ is module amenable but not amenable for any weight ${\omega}$.

An Experimental Study of Heat Transfer Characteristics on the Electronic Module Arrangement (전자모듈의 배열에 따른 열전달특성의 실험적 연구)

  • Lee, Dae-Hee;Lee, Dae-Keun;Cha, Yoon-Seok;Lee, Jun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2420-2425
    • /
    • 2007
  • Heat transfer from three-dimensional heat-generating modules was investigated. A simulated electronic module in an array configured with dummy module elements was used to measure the average heat transfer coefficients. Various module arrangements were tested using module spacings of 0.85 and 1.15 cm for six Reynolds numbers ranging from 500 to 975. The results show that a module placed in-line with and upstream of a heated module results in the heat transfer enhancement due to a high level in turbulence prompted by upstream modules. The highest enhancement occurs when the separation distance between modules is close to the module length in the flow direction. Flow visualization reveals laminar flow on the front of the first module, slow recirculation regions on the sides parallel to the air stream, and turbulence on the back side. It appears that the first module serves to trip the air stream and produce a high level of turbulence, which enhances the heat transfer rate downstream.

  • PDF

An Experimental Study of Heat Transfer Characteristics on the Electronic Module Arrangement (전자모듈의 배열에 따른 열전달특성의 실험적 연구)

  • Lee, Dae-Hee;Lee, Dae-Keun;Cha, Yoon-Seok;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.407-412
    • /
    • 2008
  • Heat transfer from three-dimensional heat-generating modules was investigated. Simulated electronic module in an array configured with dummy module elements were used to measure the average heat transfer coefficients. Various module arrangements were tested using module spacings of 0.85 and 1.15 cm for six Reynolds numbers ranging from 500 to 975. The results show that a module placed in-line with and upstream of a heated module results in the heat transfer enhancement due to high turbulence intensity prompted by upstream modules. The highest enhancement occurs when the separation distance between modules is close to the module length in the flow direction. The laminar flow was observed on the front of the first module, slow recirculation regions on the sides parallel to the airstream, and turbulent flow on the back side. It appears that the first module serves to trip the air stream and produce a high level of turbulence, which enhances the heat transfer rate downstream.

The Experimental Performance of an Unglazed PV-Thermal Module with Fully Wetted Absorber (전면 액체식 흡열판을 적용한 Unglazed PVT(태양광·열) 모듈의 성능 실험연구)

  • Kim, Jin-Hee;Chun, Jin-Aha;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.11 no.3
    • /
    • pp.69-73
    • /
    • 2011
  • In general, there are two types of PVT module depending on the existence of the glass in front of PV module: glazed and unglazed. On the other hand, the water-type PVT modules can be classified into two types, according to absorber type: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The aim of this study is to analyze the electrical and thermal performance of a water-type PVT module with fully wetted absorber. For this study, a prototype of unglazed PVT module with fully wetted absorber was designed and built, and both the thermal and electrical performances of the prototype module were measured in outdoor conditions. A conventional mono-crystalline Si PV module was tested alongside the PVT module for their electrical performance comparison. The results showed that the thermal efficiency of the PVT module was average 51% and its electrical efficiency was average 14.3% in mean fluid temperature $10-40^{\circ}C$, whereas the electrical efficiency of the conventional PV module was average 12.6%. It is found that the electrical efficiency of the PVT module was improved by approximately 14% compared to that of the PV module. The temperature of PVT module becomes lower due to the cooling effect by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

Temperature Control of Aluminum Plate by PWM Current Control of Peltier Module (펠티어 소자의 PWM 전류제어를 이용한 알루미늄 판의 온도제어)

  • Pang, Du-Yeol;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.60-67
    • /
    • 2006
  • This paper presents the temperature control in aluminum plate with Peltier module. From the experimental work, Peltier module is used to control the temperature of small aluminum plate for both heating and cooling with the control of current and fan ON/OFF. And current control of Peltier module was accomplished by PWM method. As a result of experiments, it is proper that operate cooling fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 125sec to control temperature of aluminium plate between $30^{\circ}C$ and $70^{\circ}C$ and about 70sec between $40^{\circ}C$ and $60^{\circ}C$, in ambient temperature $28^{\circ}C{\sim}29^{\circ}C$ while cooling fan is operated only cooling duration. With the cooling current, temperature control of aluminum plate was accomplished more rapidly in comparison without cooling current. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier module as a heating and cooling source.

A Study on the Development of BIPV Module Equipped with Vacuum Glass for Improved Thermal Performance (단열성능 개선을 위한 진공유리가 부착된 BIPV Module 개발에 관한 연구)

  • Eom, Jae-Yong;Lee, Hyun-Soo;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.44-52
    • /
    • 2014
  • The main purpose of this paper is to develop the new BIPV module equipped with vacuum glass. Beacuse BIPV module has a function of architectural materials, thermal and PV performance should be simultaneously evaluated. To improve the thermal performance of BIPV module, this study developed BIPV module equipped with a vacuum glass. Those BIPV module was tested with a variety of encapsulants. The results are as follows. When a vacuum glass is laminated with EVA or PVB, it was broken. The reason seems to be bending by unbalance of heat expansion with center and edge of vacuum glass. In case of lamination with resin, there is no breakage and no bending of vacuum glass. Because production was conducted in low pressure & low temperature conditions. And it was also found that vacuum glass does not interfere with the UV curing process.

The Optimimum Gel Content Characteristics for Cell Cracks Prevention in PV Module (PV모듈의 cell crack 방지를 위한 EVA Sheet의 최적 Gel content 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Kim, Kyung-Soo;Huh, Chang-Su;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1108-1109
    • /
    • 2008
  • To survive in outdoor environments, photovoltaic modules rely on packaging materials to provide requisite durability. We analyzed the properties of encapsulant materials that are important for photovoltaic module packaging. Recently, the thickness of solar cell gets thinner to reduce the quantity of silicon. And the reduced thickness make it easy to be broken while PV module fabrication process. Solar cell's micro cracks are increasing the breakage risk over the whole value chain from the wafer to the finished module, because the wafer or cell is exposed to tensile stress during handling and processing. This phenomenon might make PV module's maximum power and durability down. So, when using thin solar cell for PV module fabrication, it is needed to optimize the material and fabrication condition which is quite different from normal thick solar cell process. Normally, gel-content of EVA sheet should be higher than 80% so PV module has long term durability. But high gel-content characteristic might cause micro-crack on solar cell. In this experiment, we fabricated several specimen by varying curing temperature and time condition. And from the gel-content measurement, we figure the best fabrication condition. Also we examine the crack generation phenomenon during experiment.

  • PDF

Design and Implementation of Embedded Ethernet Module for Home Network (홈 네트워크를 위한 Embedded Ethernet Module 설계 및 구현)

  • Kim Pan-kyu;Hoan Tae-Moon;Lee Jong-hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1111-1116
    • /
    • 2005
  • The necessity of the home network have been enlarged gradually according to the distribution of ultra-high speed internet, the expansion of a digital information equipment and the change of a life pattern. In this paper, we proposed the embedded ethernet module that could be operate on eight bit system, but it could control home appliance with full ethernet speed. The embedded ethernet module consists of 8051 MCU and Hardware TCP/IP. In this module, we construct simple web server and port remote control program for I/O device control. We verified through internet that the developed embedded ethernet module could control and check home appliances anywhere and anytime. We expect the developed ethernet module can build up niche market at home network. And it will be helpful to activate home network market.