• Title/Summary/Keyword: IT girder

Search Result 809, Processing Time 0.024 seconds

Development of the Program Checking the Constructible Possibility of Prestressed Concrete Box Girder Bridges (PSC 박스 거더교의 시공성 검사 프로그램 개발)

  • 김병석;김영진;강재윤;한석희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.701-705
    • /
    • 1998
  • The objective of this study is to develop the practical program which can check the constructible possibility of prestressed concrete box girder bridges for design. Checking constructible possibility is defined as checking the interference of each elements in a PSC box girder bridge and computing the distances of each elements. To check the constructible possibility of a PSC box girder bride, bridge must be modelled using solid in three dimension. By using a 3 dimensional solid modeling system, engineers can get the photo realistic 3D viewing images of the bridge and produce FEM analytic model of it. Users can manipulate their drawings easier and take off quantity of the whole structure and its elements as well as check the constructible possibility of their PSC box girder bridges.

  • PDF

Evaluation on the Edge Stiffening Affect of Composite Girder Bridge (합성형교의 외측강성 영향 평가)

  • Sung, Ki Tae;Park, Young Hoon;Lee, Seung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.179-186
    • /
    • 2008
  • To analyzing the validity for using the stiffness ratio in evaluating edge stiffness effect of the composite girder bridges, modification factors are analyzed with changing girder spacing. The relation between stiffness ratio, loading type, girder spacing and modification factors is analyzed. From the results of comparing modification factors analyzed from the field loading test and the established design method with the modification factor analyzed from this study, it was concluded that evaluating the edge stiffness effect using stiffness ratio is possible.

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.

On Applicability of UItra High Performance Concrete for Prestressed Concrete I-Girder (초고성능 콘크리트의 I형 PSC거더 적용성에 관한 고찰)

  • Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung;Koh, Kyung-Taek;Kim, Sung-Wook;Han, Nock-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.493-496
    • /
    • 2006
  • Ultra high performance concrete(UHPC) has an excellent strength, toughness, and durability. It seems that it is very efficiently applicable for various structures such as bridge, building. When it is used to bridge girder, It is possible to reduce the amount of concrete and steel, to cut down costs for construction. This paper estimated whether it was applicable and how it was efficient. It was confirmed that the height of girder could be reduced by 40% or more in using UHPC. We can also think that the stirrups can be removed considering the ductile tensile behavior of UHPC and that its very high compressive strength make the anchor plate smaller from this study.

  • PDF

Study on Analysis of Skew Grillage Girder Bridges by Transfer Matrix Method (전달행렬법에 의한 경사 격자교의 해석에 관한 연구)

  • Kim, Yong-Hee;Lee, Yoon-Young;Kim, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.159-170
    • /
    • 2005
  • The grid structure is parallel main girders intersected with crossgirder. It distribute the loads to adjoining main girder through the crossgirder when a girder is subjected to a load. grillage girder bridge has high load-carrying capacity, it can save materials and become more economical type of bridge. In this paper, the grillage girder bridge analysis program developed by using the transfer matrix method deals with following problems: the comparision with Leonhardt, Szabo, FEM yang and jung in the analysis of grillage girder bridges, quality of straight and curved bridges with skew angle, forces of straight and curved bridges according to skew angle and bending stiffness/torsional stiffness ratio.

A Study of Survivability Improvement Method for Naval Ships′Design I - Design Method Considering Box Girder - (함정 설계의 생존성 향상 방안에 관한 연구 I - Box Girder를 고려한 설계 방법 -)

  • Kim, Jae-Hyun;Park, Myeong-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.199-207
    • /
    • 2003
  • In the combat environments at the sea, the naval ships should have enough structural integrity to perform the task under the enemy's attack and possible damages. Although the naval ships can be damaged from the enemy's attack, those damages should be minimized and the naval ships must maintain their combat capabilities continuously after recoveries from the damages. Therefore, it is ve교 important for modem naval ships, especially combat naval ships, to ensure the survivability. This paper reviewed the developing procedure for the technique of the naval ships structures and described method, especially box girder system considering survivability. The efficiency of box girder is examined by numerical simulation, and it is found that the establishment of box girder is a good design method to improve the survivability.

Design Consideration of Fish-bone Girder Pier using the Analysis of Torsional Behavior (조립식 경골잔교(Fish-bone Girder Pier)의 비틀림 거동분석을 통한 설계 시 고려사항)

  • Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.561-568
    • /
    • 2014
  • A modular fish-bone girder pier consists of one main girder system named as "Spine Girder". Therefore, this pier can be most affected by torsion as well as flexural bending. The design considerations of the fish-bone girder pier are proposed to assure the reasonable design in this study. In order to investigate the behavior characteristics, structural analysis F.E model is developed, and the verification of the developed model is performed by comparison with experimental data. From the investigation of the structural behavior, the vertical stiffener is required at the bottom of bone-beams to prevent the excessive local stress. Also, it is found that the normal stress of the flange and the shear stress of the web and flange are dominantly affected by the warping torsion and pure torsion, respectively.

A Study on the Lattice Girder by Increasing Contacting Area between Spider and Rod (스파이더와 강봉간 접촉면적을 증가시킨 격자지보재에 대한 연구)

  • Nam, Joong-Woo;Kim, Jin-Kyo;Cho, Yong-Gyo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.17-25
    • /
    • 2012
  • Shotcrete, rockbolt, and steel rib are installed to support ground after tunnel was excavated. These are important supports for NATM applied tunnels. Recently, lattice girder is increasingly used because it is easily installed. In this study, we developed a new lattice girder by increasing contacting area between spider and rod. To verify the effect of the new lattice girder, the 3-point and 4-point flexural strength tests were carried out for LG-$50{\times}20{\times}30$, LG-$70{\times}20{\times}30$, LG-$95{\times}22{\times}32$. As a result, in case of contacting area, strength of new SGS lattice girder is 17.95% higher than that of original lattice girder. In case of weakness point, strength of new SGS lattice girder is 19.37% higher than that of original lattice girder.

An Experimental Study on Load Bearing Capacity of Lattice Girder as a Steel Support in Tunnelling (터널 지보재로서 격자지보의 하중지지력에 관한 실험적 연구)

  • 유충식;배규진
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1997
  • It has long been recognized that the H-beam steel rib has many shortcomings when used as a steel support in tunneling. One of the major shortcomings is the shotcrete shadow created behind H-beam flange which eventually reduces the load bearing capacity of shotcrete shell. In many European countries, plate girder as the H-beam steel rib has been replaced by lattice girder which has many advantages over the H-beam steel rib. Successful application of the lattice girder as a steel support requires a thorough investigation on the load bearing capacity of the lattice girder. Therefore, laboratory bending and compression tests were conducted on lattice girders with the aim of investigating the load bearing capacity of the lattice girders. The results of tests show that the load bearing capacity of laIn twice girders is higher than that of H-beams, which indicates that the lattice girder can be effectively used as a support in tunneling.

  • PDF

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.