• Title/Summary/Keyword: INTERPHASE

Search Result 197, Processing Time 0.028 seconds

Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials

  • Jung, Kwangeun;Oh, Si Hyoung;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • Nickel-rich lithium nickel-cobalt-manganese oxides (NCM) are viewed as promising cathode materials for lithium-ion batteries (LIBs); however, their poor cycling performance at high temperature is a critical hurdle preventing expansion of their applications. We propose the use of a functional electrolyte additive, triphenyl phosphate (TPPa), which can form an effective cathode-electrolyte interphase (CEI) layer on the surface of Ni-rich NCM cathode material by electrochemical reactions. Linear sweep voltammetry confirms that the TPPa additive is electrochemically oxidized at around 4.83 V (vs. Li/Li+) and it participates in the formation of a CEI layer on the surface of NCM811 cathode material. During high temperature cycling, TPPa greatly improves the cycling performance of NCM811 cathode material, as a cell cycled with TPPa-containing electrolyte exhibits a retention (133.7 mA h g-1) of 63.5%, while a cell cycled with standard electrolyte shows poor cycling retention (51.3%, 108.3 mA h g-1). Further systematic analyses on recovered NCM811 cathodes demonstrate the effectiveness of the TPPa-based CEI layer in the cell, as electrolyte decomposition is suppressed in the cell cycled with TPPa-containing electrolyte. This confirms that TPPa is effective at increasing the surface stability of NCM811 cathode material because the TPPa-initiated POx-based CEI layer prevents electrolyte decomposition in the cell even at high temperatures.

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun;Lee, Suhyun;Kim, Kun Woo;Son, Jungman;Mun, Junyoung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.424-430
    • /
    • 2021
  • The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

Spatial visualization of PEO viscoelastic properties on drag reduction in Taylor-Couette flow (Taylor-Couette 흐름에서의 항력 감소에 대한 PEO 점탄성 특성의 공간 가시화)

  • Mikolaj Mrozek;Hyeokgyun Moon;Jinkee Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.63-73
    • /
    • 2024
  • The injection of polymer can significantly reduce drag, particularly in the turbulent flow region where the mutual interaction between the polymer and turbulent vortices occurs. In this study, Taylor-Couette flow of PEO-in-water solutions with a rotating inner cylinder was analyzed. Despite the shear-thinning behaviour of PEO-in-water solutions being well-documented, for a given range of shear rates their viscosity remains nearly constant. By varying the polymer concentration, we analyzed the torque evolution of different solutions followed by the viscoelasticity effects of the polymer on the interphase transition points. The torque was analyzed using a dimensionless torque scaling method, which allows for the assessment of the fluid's momentum transport capabilities. It was observed that for low concentrations of PEO, the flow behaviour exhibited only minor differences in comparison to that of water, the Newtonian fluid. However, once the PEO concentration exceeded the polymer overlap concentration, the flow behaviour was significantly altered.

Impregnation Behavior of SiCf/SiC Composites Depending on the Polycarbosilane Precursor and Solvent (폴리카보실란의 종류와 용제에 따른 SiCf/SiC복합재의 충진 거동)

  • Kim, Sun-Han;Jung, Yang-Il;Park, Jeong-Yong;Kim, Hyun-Gil;Koo, Yang-Hyun;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.474-480
    • /
    • 2014
  • Process conditions for the impregnation of polycarbosilane preceramic polymer into SiC-based composites were investigated. Two kinds of preceramic polymer (PCP) was impregnated into SiC-fiber fabrics with different solvents of n-hexane and divinylbenzene (DVB). Both microstructural observations and mechanical tests were conducted to evaluate the impregnation. The matrix phases were particulated in the case of hexane solvents. Apparent relative density of the matrix was about 78.8%. The density of matrix was increased to about 96.1-98.8% when the DVB was used; however, brittle fracture was observed during a bending test. The modulus of toughness was less than $0.74J/m^3$. The fabric impregnated with a mixed PCP-dissolved solution showed intermediate characteristics with relative high density of filling (apparent density of ~96.1%) as well as proper bending behavior. The modulus of toughness was increased to about $5.31J/m^3$. The composites developed by changing the precursor and solvent suggested the possibility of fabricating SiCf/SiC composites without a fiber to matrix interphase coating.

Fluid Structure Interaction Analysis of Membrane Type LNG CCS Experiencing the Sloshing Impact by Impinging Jet Model (멤브레인형 LNG 화물창의 강도평가를 위해 적용된 분사모델을 이용한 유체구조 연성해석에 관한 연구)

  • Hwang, Se Yun;Lee, Jang Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • The reliable sloshing assessment methods for LNG CCS(cargo containment system) are important to satisfy the structural strength of the systems. Multiphase fluid flow of LNG and Gas Compressibility may have a large effect on excited pressures and structural response. Impinging jet model has been introduced to simulate the impact of the LNG sloshing and analyze structural response of LNG CCS as a practical FSI(fluid structure interaction) method. The practical method based on fluid structure interaction analysis is employed in order to evaluate the structural strength in actual scale for Mark III CCS. The numerical model is based on an Euler model that employs the CVFEM(control volume based finite element method). It includes the particle motion of gas to simulate not only the interphase interaction between LNG liquid and gas and the impact load on the LNG insulation box. The analysis results by proposed method are evaluated and discussed for an effectiveness of FSI analysis method.

Cytogenetic Profile of De Novo B lineage Acute Lymphoblastic Leukemia: Determination of Frequency, Distribution Pattern and Identification of Rare and Novel Chromosomal Aberrations in Indian Patients

  • Bhandari, Prerana;Ahmad, Firoz;Dalvi, Rupa;Koppaka, Neeraja;Kokate, Prajakta;Das, Bibhu Ranjan;Mandava, Swarna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7219-7229
    • /
    • 2015
  • Background: Chromosomal aberrations identified in acute lymphoblastic leukemia (ALL) have an important role in disease diagnosis, prognosis and management. Information on karyotype and associated clinical parameters are essential to physicians for planning cancer control interventions in different geographical regions. Materials and Methods: In this study, we present the overall frequency and distribution patterns of chromosomal aberrations in both children and adult de novo B lineage ALL Indian patients using conventional cytogenetics, interphase FISH and multiplex RT-PCR. Results: Among the 215 subjects, cytogenetic results were achieved in 172 (80%) patients; normal karyotype represented 37.2% and abnormal 62.8% with a distribution as follows: 15.3% hypodiploidy; 10.3% hyperdiploidy; 15.8% t(9;22); 9.8% t(1;19); 3.7% t(12;21); 2.8% t(4;11); 2.8% complex karyotypes. Apart from these, we observed several novel, rare and common chromosomal rearrangements. Also, FISH studies using LSI extra-signal dual-color probes revealed additional structural or numerical changes. Conclusions: These results demonstrate cytogenetic heterogeneity of ALL and confirm that the incidence of chromosomal abnormalities varies considerably. To the best of our knowledge, this is one of the largest reported series of cytogenetic investigations in Indian B-lineage ALL cases. In addition, ongoing cytogenetic studies are warranted in larger groups of B-lineage ALL cases to identify newly acquired chromosomal abnormalities that may contribute to disease diagnosis and management.

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit

  • Zineldeen, Doaa H.;Wagih, Ayman A.;Nakanishi, Makoto
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3669-3676
    • /
    • 2013
  • Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.

A Study for Reducing Traffic Accident at Signalized Intersection - Focus on Left-turn Phase Sequence - (교차로 교통사고 감소방안에 관한 연구 - 좌회전 현시 순서를 중심으로 -)

  • Park, Jong-Wook;Lee, In-Won;Lee, Choul-Ki;Yang, Lyun-Ho;Lee, Gun-Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.61-71
    • /
    • 2006
  • The main purpose of this study is to search a method for reducing traffic accident at signalized intersections. One of the important factors for this is the Left-turn phase sequence. In 1985, the operational principle of Left-turn phase Sequence was changed from Lagging left-turn to Leading left-turn in Korea. Then there was a resonable motive-no exclusive left turn-lane and narrow intersection. So, it is necessary to evaluate the performance difference between Leading and Lagging left -turn phase Sequence. The process of this study is as follows: $\cdot$ First, all the intersection was divided three parts for analysis the traffic safety: Inside part of an Intersection, Crosswalk, Intersection approach and exit. $\cdot$ Second, a safety analysis was performed by using the concepts of 'Effective interphase Period(EIP)' and 'Conflict method' The Study result is that the benefit of of phase Sequence changes from Leading to Lagging phase were significant. For an example the Accident cost will reduced about 41.8 billion won per year in korea.

  • PDF

The Behaviour of Ru Based Thick Film Resistor as a Comonent of LCR Network (LCR Network을 구성하는 Ru계 후막저항계의 거동)

  • 박지애;이홍림;문지웅;김구대;이동아;손용배
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.233-240
    • /
    • 1997
  • The Ru-based thick film resistor(TFR) for sintering at 90$0^{\circ}C$ was synthesized to prepare the LCR net-work. These compositions of pyrochlore could be prepared by decreasing the amount of PbO and increasing alumina and silica contents of glass frit. In this study, the sheet resistances of the TFTs. which sint-ered at 90$0^{\circ}C$ after printing on alumina substrate, the sheet resistances of the TFRs on inductor and capa-citor substrate and the interphase between TFR and substrate were observed. And the changes of the sheet resistance were obtained with the contents of RuO2. In case of the TFR sintered at 90$0^{\circ}C$, the sheet resis-tances on alumina substrates were in the range of 103~106$\Omega$/$\square$, but the sheet resistances of TFR on in-ductor and capacitor substrate were not obtained.

  • PDF

Ultrastructural Study on the Development of Male Germ Cell of the Olive Flounder, Paralichthys olivaceus (Teleostei: Pleuronectidae) (넙치 (Paralichthys olivaceus)의 웅성생식세포 발달에 관한 미세구조적 연구)

  • Kim, Jae-Won;Kim, Bong-Seok;Choi, Cheol-Young;Lee, Jung-Sick
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • Ultrastructural changes of the male germ cells and structure of spermatozoa in Paralichthys olivaceus were examined by means of the light and transmission electron microscopes. The spermatogonium has a large nucleus with a single nucleus with a single nucleolus in the interphase. Primary spermatocytes are identified by the formation of the synaptonemal complex in the karyoplasm. The secondary spermatocytes are more concentrated and contains numerous cell organelle in the cytoplasm. The nucleus of spermatid in spermiogenesis is more condensed in the karyoplasm, and show spherical structure in shape. Mitochondria of the spermatids are observed in the lower portion of the nucleus. The spermatozoon consists of the head, mid piece and tail. The acrosome is not observed in the head. Axial filaments of the flagellum consists of nine pairs of the peripheral microtubules and one pair of the central microtubules.