DOI QR코드

DOI QR Code

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte

  • Kim, Jineun (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Lee, Suhyun (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Kim, Kun Woo (Samsung SDI) ;
  • Son, Jungman (Samsung SDI) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • Received : 2021.03.22
  • Accepted : 2021.04.02
  • Published : 2021.11.28

Abstract

The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.

Keywords

Acknowledgement

This research was supported by the Incheon National University Grant in 2020.

References

  1. L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, J. Power Sources., 2013, 226, 272-288. https://doi.org/10.1016/j.jpowsour.2012.10.060
  2. S. Peterson, J. Apt and J. Whitacre, J. Power Sources., 2010, 195(8), 2385-2392. https://doi.org/10.1016/j.jpowsour.2009.10.010
  3. D. Stroe, V. Knap, M. Swierczynski, A. Stroe and R. Teodorescu, IEEE Trans. Ind. Appl., 2017, 53(1), 430-438. https://doi.org/10.1109/TIA.2016.2616319
  4. A. Barre, B. Deguilhem, S. Grolleau, M. Gerard, F. Suard and D. Riu, J. Power Sources., 2013, 241, 680-689. https://doi.org/10.1016/j.jpowsour.2013.05.040
  5. Q. Wang, P. Ping, W. Zhao, G. Chu, J. Sun and C. Chen, J. Power Sources., 2012, 208, 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038
  6. M. Henriksen, K. Vaagsaether, J. Lundeberg, S. Forseth and D. Bjerketvedt, J. Hazard. Mater., 2019, 371, 1-7. https://doi.org/10.1016/j.jhazmat.2019.02.108
  7. A. Kayyar, J. Huang, M. Samiee and J. Luo, Journal of Visualized Experiments., 2012, 66, 4104.
  8. Y. Liang, C. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Huang, D. Yu, Y. Liu, M. Titirici, Y. Chueh, H. Yu and Q. Zhang, InfoMat., 2019, 1(1), 6-32. https://doi.org/10.1002/inf2.12000
  9. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J. Zhang, Energy Environ. Sci., 2014, 7(2), 513-537. https://doi.org/10.1039/C3EE40795K
  10. W. Kicinski and S. Dyjak, Carbon., 2020, 168, 748-845. https://doi.org/10.1016/j.carbon.2020.06.004
  11. S. Bratsch, J Phys Chem Ref Data., 1989, 18(1), 1-21. https://doi.org/10.1063/1.555839
  12. S. Solchenbach, G. Hong, A. Freiberg, R. Jung and H. Gasteiger, J. Electrochem. Soc., 2018, 165(4), A3304. https://doi.org/10.1149/2.0511814jes
  13. T. Ma, G. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M. Engelhard, P. Zapol, L. Curtiss, J. Jorne, K. Amine and Z. Chen, J. Phys. Chem., 2017, 8(5), 1072-1077.
  14. X. Zhang, A. Wang, R. Lv and J. Luo, Energy Stor. Mater., 2019, 18, 199-204. https://doi.org/10.1016/j.ensm.2018.09.017
  15. C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang and J. Wang, Adv. Energy Mater., 2016, 6(20), 1601034. https://doi.org/10.1002/aenm.201601034
  16. Y. Wen, H. Zhang, P. Qian, H. Zhou, P. Zhao, B. Yi and Y. Yang, Electrochimica Acta, 2006, 51(18), 3769-3775. https://doi.org/10.1016/j.electacta.2005.10.040
  17. W. Zhang, J. Power Sources., 2011, 196(6), 2962-2970. https://doi.org/10.1016/j.jpowsour.2010.11.113
  18. D. Aurbach, B. Markovsky, A. Shenchter, Y. Eli and H. Cohen, J. Electrochem. Soc., 1996, 143(12), 3809. https://doi.org/10.1149/1.1837300