Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00353

Electrochemical Corrosion Behavior of Iron in Lithium-ion Battery Electrolyte  

Kim, Jineun (Department of Energy and Chemical Engineering, Incheon National University)
Lee, Suhyun (Department of Energy and Chemical Engineering, Incheon National University)
Kim, Kun Woo (Samsung SDI)
Son, Jungman (Samsung SDI)
Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 424-430 More about this Journal
Abstract
The element iron (Fe) is affordable and abundantly available, and thus, it finds use in a wide range of applications. As regards its application in rechargeable lithium-ion batteries (LIBs), the electrochemical reactions of Fe must be clearly understood during battery charging and discharging with the LIB electrolyte. In this study, we conducted systematic electrochemical analyses under various voltage conditions to determine the voltage at which Fe corrosion begins in general lithium salts and organic solvents used in LIBs. During cyclic voltammetry (CV) experiments, we observed a large corrosion current above 4.0 V (vs. Li/Li+). When a constant voltage of 3.7 V (vs. Li/Li+), was applied, the current did not increase significantly at the beginning, similar to the CV scenario; on the other hand, at a voltage of 3.8 V (vs. Li/Li+), the current increased rapidly. The impact of this difference was visually confirmed via scanning electron microscopy and optical microscopy. Our X-ray photoelectron spectroscopy measurements showed that at 3.7 V, a thick organic solid electrolyte interphase (SEI) was formed atop a thin fluoride SEI, which means that at ≥3.8 V, the SEI cannot prevent Fe corrosion. This result confirms that Fe corrosion begins at 3.7 V, beyond which Fe is easily corrodible.
Keywords
Iron; Corrosion; Lithium-Ion Battery; Electrolyte; Thermodynamic Criteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, J. Power Sources., 2013, 226, 272-288.   DOI
2 D. Stroe, V. Knap, M. Swierczynski, A. Stroe and R. Teodorescu, IEEE Trans. Ind. Appl., 2017, 53(1), 430-438.   DOI
3 A. Barre, B. Deguilhem, S. Grolleau, M. Gerard, F. Suard and D. Riu, J. Power Sources., 2013, 241, 680-689.   DOI
4 M. Henriksen, K. Vaagsaether, J. Lundeberg, S. Forseth and D. Bjerketvedt, J. Hazard. Mater., 2019, 371, 1-7.   DOI
5 A. Kayyar, J. Huang, M. Samiee and J. Luo, Journal of Visualized Experiments., 2012, 66, 4104.
6 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J. Zhang, Energy Environ. Sci., 2014, 7(2), 513-537.   DOI
7 W. Kicinski and S. Dyjak, Carbon., 2020, 168, 748-845.   DOI
8 T. Ma, G. Xu, Y. Li, L. Wang, X. He, J. Zheng, J. Liu, M. Engelhard, P. Zapol, L. Curtiss, J. Jorne, K. Amine and Z. Chen, J. Phys. Chem., 2017, 8(5), 1072-1077.
9 C. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang and J. Wang, Adv. Energy Mater., 2016, 6(20), 1601034.   DOI
10 Y. Wen, H. Zhang, P. Qian, H. Zhou, P. Zhao, B. Yi and Y. Yang, Electrochimica Acta, 2006, 51(18), 3769-3775.   DOI
11 W. Zhang, J. Power Sources., 2011, 196(6), 2962-2970.   DOI
12 D. Aurbach, B. Markovsky, A. Shenchter, Y. Eli and H. Cohen, J. Electrochem. Soc., 1996, 143(12), 3809.   DOI
13 S. Solchenbach, G. Hong, A. Freiberg, R. Jung and H. Gasteiger, J. Electrochem. Soc., 2018, 165(4), A3304.   DOI
14 S. Peterson, J. Apt and J. Whitacre, J. Power Sources., 2010, 195(8), 2385-2392.   DOI
15 Q. Wang, P. Ping, W. Zhao, G. Chu, J. Sun and C. Chen, J. Power Sources., 2012, 208, 210-224.   DOI
16 Y. Liang, C. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Huang, D. Yu, Y. Liu, M. Titirici, Y. Chueh, H. Yu and Q. Zhang, InfoMat., 2019, 1(1), 6-32.   DOI
17 S. Bratsch, J Phys Chem Ref Data., 1989, 18(1), 1-21.   DOI
18 X. Zhang, A. Wang, R. Lv and J. Luo, Energy Stor. Mater., 2019, 18, 199-204.   DOI