Browse > Article
http://dx.doi.org/10.7314/APJCP.2013.14.6.3669

Cloning and Functional Characterization of Ptpcd2 as a Novel Cell Cycle Related Protein Tyrosine Phosphatase that Regulates Mitotic Exit  

Zineldeen, Doaa H. (Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University)
Wagih, Ayman A. (Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University)
Nakanishi, Makoto (Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.14, no.6, 2013 , pp. 3669-3676 More about this Journal
Abstract
Faithful transmission of genetic information depends on accurate chromosome segregation as cells exit from mitosis, and errors in chromosomal segregation are catastrophic and may lead to aneuploidy which is the hallmark of cancer. In eukaryotes, an elaborate molecular control system ensures proper orchestration of events at mitotic exit. Phosphorylation of specific tyrosyl residues is a major control mechanism for cellular proliferation and the activities of protein tyrosine kinases and phosphatases must be integrated. Although mitotic kinases are well characterized, phosphatases involved in mitosis remain largely elusive. Here we identify a novel variant of mouse protein tyrosine phosphatase containing domain 1 (Ptpcd1), that we named Ptpcd2. Ptpcd1 is a Cdc14 related centrosomal phosphatase. Our newly identified Ptpcd2 shared a significant homology to yeast Cdc14p (34.1%) and other Cdc14 family of phosphatases. By subcellular fractionation Ptpcd2 was found to be enriched in the cytoplasm and nuclear pellets with catalytic phosphatase activity. By means of immunofluorescence, Ptpcd2 was spatiotemporally regulated in a cell cycle dependent manner with cytoplasmic abundance during mitosis, followed by nuclear localization during interphase. Overexpression of Ptpcd2 induced mitotic exit with decreased levels of some mitotic markers. Moreover, Ptpcd2 failed to colocalize with the centrosomal marker ${\gamma}$-tubulin, suggesting it as a non-centrosomal protein. Taken together, Ptpcd2 phosphatase appears a non-centrosomal variant of Ptpcd1 with probable mitotic functions. The identification of this new phosphatase suggests the existence of an interacting phosphatase network that controls mammalian mitosis and provides new drug targets for anticancer modalities.
Keywords
Ptpcd1; mitotic exit; cell cycle; Cdc14; protein tyrosine phosphatase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bas a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell, 19, 629-39.
2 Berdougo E, Nachury MV, Jackson PK, Jallepalli PV (2008). The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle, 7, 1184-90.   DOI
3 Beuming T, Skrabanek L, Niv MY, Mukherjee P, Weinstein H (2005). PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics, 21, 827-28.   DOI   ScienceOn
4 Bremmer SC, Hall H, Martinez JS, et al (2012). Cdc14 phosphatases preferentially dephosphorylate a subset of cyclin-dependent kinase (Cdk) sites containing phosphoserine. J Biol Chem, 287, 1662-9.   DOI
5 Chan KS, Koh CG, Li HY (2012). Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis, 3, 411.   DOI   ScienceOn
6 Chen J, Chan AW, To KF, et al (2013). SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-$3\beta$/$\beta  $-catenin signaling. Hepatology, 57, 2287-98.   DOI   ScienceOn
7 Chiesa M, Guillamot M, Bueno MJ, Malumbres M (2011). The Cdc14B phosphatase displays oncogenic activity mediated by the Ras-Mek signaling pathway. Cell Cycle, 10, 1607-17.   DOI
8 Cho HP, Liu Y, Gomez M, et al (2005). The dual-specificity phosphatase CDC14B bundles and stabilizes microtubules. Mol Cell Biol, 25, 4541-51.   DOI   ScienceOn
9 Dinkel H, Michael S, Weatheritt RJ, et al (2012). ELM--the database of eukaryotic linear motifs. Nucleic Acids Res, 40, 242-51.
10 Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (2003). Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol, 23, 3173-85.   DOI   ScienceOn
11 Galeano F, Rossetti C, Tomaselli S, et al (2013). ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene, 32, 998-1009.   DOI   ScienceOn
12 Galan-Malo P, Vela L, Gonzalo O, et al (2012). Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold. Toxicol Appl Pharmacol, 258, 384-93.   DOI   ScienceOn
13 Gascoigne KE, Cheeseman IM (2013). CDK-dependent phosphorylation and nuclear exclusion coordinately control kinetochore assembly state. J Cell Biol, 201, 23-32.   DOI   ScienceOn
14 Gascoigne KE, Taylor SS (2008). Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell, 14, 111-22.   DOI   ScienceOn
15 Graham JM (2002). Preparation of crude subcellular fractions by differential centrifugation. Sci World J, 2, 1638-42.   DOI
16 Hancioglu B, Tyson JJ (2012). A mathematical model of mitotic exit in budding yeast: the role of Polo kinase. PLoS One, 7, 308-10.
17 Huang HC, Shi J, Orth JD, Mitchison TJ (2009). Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell, 16, 347-58.   DOI   ScienceOn
18 Lai CC, Lin PM, Lin SF, et al (2013). Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol, 34, 1847-54.   DOI   ScienceOn
19 Hunt T (2013). On the regulation of protein phosphatase 2A and its role in controlling entry into and exit from mitosis. Adv Biol Regul, 53, 173-8.   DOI   ScienceOn
20 Janssen A, Medema RH (2011). Mitosis as an anti-cancer target. Oncogene, 30, 2799-809.   DOI   ScienceOn
21 Larkin MA, Blackshields G, Brown NP, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-48.   DOI   ScienceOn
22 Lupas A, Van Dyke M, Stock, J. (1991). Predicting coiled coils from protein sequences. Science, 252, 1162-64.   DOI
23 Manchado E, Guillamot M, de Carcer G, et al (2010). Targeting mitotic exit leads to tumor regression in vivo: Modulation by Cdk1, Mastl, and the PP2A/$B55\alpha$, $\delta$ phosphatase. Cancer Cell, 18, 641-54.   DOI   ScienceOn
24 Massey AJ, Borgognoni J, Bentley C (2010). Context-dependent cell cycle checkpoint abrogation by a novel kinase inhibitor. PLoS One, 5, 13123.   DOI   ScienceOn
25 Maya-Mendoza A, Jackson, DA (2009). Replication timing: findings from fibers. Cell Cycle, 8, 3073-74.
26 Mocciaro A, Berdougo E, Zeng K (2010). Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. J Cell Biol, 189, 631-9.   DOI   ScienceOn
27 Mocciaro A, Schiebel E. (2010). Cdc14: a highly conserved family of phosphatases with non-conserved functions? J Cell Sci, 123, 2867-76.   DOI   ScienceOn
28 Mochida S, Hunt T (2007). Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature, 449, 336-40.   DOI   ScienceOn
29 Nalepa G, Harper JW (2004). Visualization of a highly organized intranuclear network of filaments in living mammalian cells. Cell Motil Cytoskeleton, 59, 94-108.   DOI   ScienceOn
30 Mendez J, Stillman B (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol, 20, 8602-12.   DOI
31 Naruyama H, Shimada M, Niida H, et al (2008). Essential role of Chk1 in S phase progression through regulation of RNR2 expression. Biochem Biophys Res Commun, 374, 79-83.   DOI   ScienceOn
32 Niida H, Katsuno Y, Banerjee B, Hande MP, Nakanishi M (2007). Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol, 27, 2572-81.   DOI   ScienceOn
33 North BJ, Verdin E (2007). Mitotic regulation of SIRT2 by cyclin-dependent kinase 1-dependent phosphorylation. J Biol Chem, 282, 19546-55.   DOI   ScienceOn
34 Novak B, Tyson JJ, Gyorffy B, Csikasz-Nagy A (2007). Irreversible cell-cycle transitions are due to systems-level feedback. Nat Cell Biol, 9, 724-28.   DOI   ScienceOn
35 Patterson KI, Brummer T, O'Brien PM, Daly RJ (2009). Dualspecificity phosphatases: critical regulators with diverse cellular targets. Biochem J, 418, 475-89.
36 Rossio V, Galati E, Ferrari M, et al (2010). The RSC chromatinremodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase. J Cell Biol, 191, 981-97.   DOI   ScienceOn
37 Russell P, Hennessy BT, Li J, et al (2012). Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene, 31, 2450-60.   DOI   ScienceOn
38 Shimada M, Niida H, Zineldeen DH, et al (2008). Chk1 is a histone H3 threonine 11 kinase that regulates DNA damageinduced transcriptional repression. Cell, 132, 221-32.   DOI   ScienceOn
39 Sanchez-Diaz A, Nkosi PJ, Murray S, Labib K (2012). The Mitotic Exit Network and Cdc14 phosphatase initiate cytokinesis by counteracting CDK phosphorylations and blocking polarised growth. EMBO J, 31, 3620-34.   DOI
40 Shimada M, Nakanishi M (2013). Response to DNA damage: why do we need to focus on protein phosphatases? Front Oncol, 3, 8.
41 Skoufias DA, Indorato RL, Lacroix F, Panopoulos A, Margolis RL (2007). Mitosis persists in the absence of Cdk1 activity when proteolysis or protein phosphatase activity is suppressed. J Cell Biol, 179, 671-85.   DOI   ScienceOn
42 Takeo S, Hawley RS, Aigaki T (2010). Calcineurin and its regulation by Sra/RCAN is required for completion of meiosis in Drosophila. Dev Biol, 344, 957-67.   DOI   ScienceOn
43 Theobald B, Bonness K, Musiyenko A (2013). Suppression of ser/thr phosphatase 4 (PP4C/PPP4C) mimics a novel post-mitotic action of fostriecin, producing mitotic slippage followed by tetraploid cell death. Mol Cancer Res, [Epub ahead of print].
44 Uchida T, Matozaki T, Matsuda K (1993). Phorbol ester stimulates the activity of a protein tyrosine phosphatase containing SH2 domains (PTP1C) in HL-60 leukemia cells by increasing gene expression. J Biol Chem, 268, 11845-50.
45 van den Berk LC, Landi E, Harmsen E, Dente L, Hendriks WJ (2005). Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteinecontaining target peptides. FEBS J, 272, 3306-16.   DOI   ScienceOn
46 Visconti R, Palazzo L, Della Monica R, Grieco D (2012). Fcp1-dependent dephosphorylation is required for M-phasepromoting factor inactivation at mitosis exit. Nat Commun, 3, 894.   DOI   ScienceOn
47 Wurzenberger C, Gerlich DW (2011). Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol, 12, 469-82.   DOI   ScienceOn
48 Vazquez-Novelle MD, Esteban V, Bueno A, Sacristan MP. (2005). Functional homology among human and fission yeast Cdc14 phosphatases. J Biol Chem, 280, 29144-50.   DOI   ScienceOn
49 Wei Z, Zhang P (2011). A phosphatase turns aggressive: the oncogenicity of Cdc14B. Cell Cycle, 10, 2414.   DOI
50 Wu J, Cho HP, Rhee DB, et al (2008). Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. J Cell Biol, 181, 475-83.   DOI   ScienceOn
51 Zhang Q, Claret FX (2012). Phosphatases: the new brakes for cancer development? Enzyme Res, 2012, 659649.
52 Zineldeen DH, Shimada M, Niida H, Katsuno Y, Nakanishi M (2009). Ptpcd-1 is a novel cell cycle related phosphatase that regulates centriole duplication and cytokinesis. Biochem Biophys Res Commun, 380, 460-6.   DOI   ScienceOn