DOI QR코드

DOI QR Code

Spatial visualization of PEO viscoelastic properties on drag reduction in Taylor-Couette flow

Taylor-Couette 흐름에서의 항력 감소에 대한 PEO 점탄성 특성의 공간 가시화

  • Mikolaj Mrozek (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Hyeokgyun Moon (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Jinkee Lee (School of Mechanical Engineering, Institute of Quantum Biophysics, Sungkyunkwan University)
  • Received : 2024.06.20
  • Accepted : 2024.07.15
  • Published : 2024.07.31

Abstract

The injection of polymer can significantly reduce drag, particularly in the turbulent flow region where the mutual interaction between the polymer and turbulent vortices occurs. In this study, Taylor-Couette flow of PEO-in-water solutions with a rotating inner cylinder was analyzed. Despite the shear-thinning behaviour of PEO-in-water solutions being well-documented, for a given range of shear rates their viscosity remains nearly constant. By varying the polymer concentration, we analyzed the torque evolution of different solutions followed by the viscoelasticity effects of the polymer on the interphase transition points. The torque was analyzed using a dimensionless torque scaling method, which allows for the assessment of the fluid's momentum transport capabilities. It was observed that for low concentrations of PEO, the flow behaviour exhibited only minor differences in comparison to that of water, the Newtonian fluid. However, once the PEO concentration exceeded the polymer overlap concentration, the flow behaviour was significantly altered.

Keywords

Acknowledgement

This work was support by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (NRF2020R1A2C3010568), the Ministry of Education (NRF2021R1A6A1A03039696), and the Korea Environment Industry & Technology Institute (KEITI) through its Ecological Imitation-based Environmental Pollution Management Technology Development Project, funded by the Korea Ministry of Environment (MOE) (2019002790003).

References

  1. Virk, Preetinder S. "Drag reduction fundamentals." AIChE Journal 21.4 (1975): 625-656.  https://doi.org/10.1002/aic.690210402
  2. Stenzel, Volkmar, Yvonne Wilke, and Wolfram Hage. "Drag-reducing paints for the reduction of fuel consumption in aviation and shipping." Progress in organic coatings 70.4 (2011): 224-229.  https://doi.org/10.1016/j.porgcoat.2010.09.026
  3. Ahmadzadehtalatapeh, Mohammad, and Majid Mousavi. "A review on the drag reduction methods of the ship hulls for improving the hydrodynamic performance." International Journal of Maritime Technology 4 (2015): 51-64. 
  4. Lowrey, Preston, and Jeff Harasha. "A preliminary assessment of the feasibility of using riblets in internal flows to conserve energy." Energy 16.3 (1991): 631-642.  https://doi.org/10.1016/0360-5442(91)90034-J
  5. Zakin, Jacques L., Bin Lu, and Hans-Werner Bewersdorff. "Surfactant drag reduction." Reviews in Chemical Engineering 14.4-5 (1998): 253-320.  https://doi.org/10.1515/REVCE.1998.14.4-5.253
  6. White, Christopher M., and M. Godfrey Mungal. "Mechanics and prediction of turbulent drag reduction with polymer additives." Annu. Rev. Fluid Mech. 40 (2008): 235-256.  https://doi.org/10.1146/annurev.fluid.40.111406.102156
  7. Perlin, Marc, David R. Dowling, and Steven L. Ceccio. "Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers." Journal of Fluids Engineering 138.9 (2016): 091104. 
  8. Taylor, Geoffrey Ingram. "VIII. Stability of a viscous liquid contained between two rotating cylinders." Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 223.605-615 (1923): 289-343.  https://doi.org/10.1098/rsta.1923.0008
  9. Casanellas, Laura, et al. "The stabilizing effect of shear thinning on the onset of purely elastic instabilities in serpentine microflows." Soft matter 12.29 (2016): 6167-6175.  https://doi.org/10.1039/C6SM00326E
  10. Philippe, A. M., et al. "Taylor-couette instability in anisotropic clay suspensions measured using small-angle x-ray scattering." Physical Review Letters 108.25 (2012): 254501. 
  11. Wagner, Herman L. "The Mark-Houwink-Sakurada equation for the viscosity of atactic polystyrene." Journal of physical and chemical reference data 14.4 (1985): 1101-1106.  https://doi.org/10.1063/1.555740
  12. McGary Jr, C. W. "Degradation of poly (ethylene oxide)." Journal of Polymer Science 46.147 (1960): 51-57.  https://doi.org/10.1002/pol.1960.1204614705
  13. Donnelly, R. J. "Experiments on the stability of viscous flow between rotating cylinders I. Torque measurements." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 246.1246 (1958): 312-325.  https://doi.org/10.1098/rspa.1958.0140
  14. Lathrop, Daniel P., Jay Fineberg, and Harry L. Swinney. "Transition to shear-driven turbulence in Couette-Taylor flow." Physical Review A 46.10 (1992): 6390. 
  15. Lathrop, Daniel P., Jay Fineberg, and Harry L. Swinney. "Turbulent flow between concentric rotating cylinders at large Reynolds number." Physical review letters 68.10 (1992): 1515. 
  16. Lumley, John L. "Drag reduction in turbulent flow by polymer additives." Journal of Polymer Science: Macromolecular Reviews 7.1 (1973): 263-290.  https://doi.org/10.1002/pol.1973.230070104
  17. Ptasinski, P. K., et al. "Experiments in turbulent pipe flow with polymer additives at maximum drag reduction." Flow, Turbulence and Combustion 66 (2001): 159-182.  https://doi.org/10.1023/A:1017985826227
  18. Dubief, Yves, et al. "New answers on the interaction between polymers and vortices in turbulent flows." Flow, turbulence and combustion 74 (2005): 311-329.  https://doi.org/10.1007/s10494-005-9002-6
  19. Raayai Ardakani, Shabnam. Geometry mediated drag reduction using riblets and wrinkled surface textures. Diss. Massachusetts Institute of Technology, 2018. 
  20. Raayai-Ardakani, Shabnam, and Gareth H. McKinley. "Geometry mediated friction reduction in Taylor-Couette flow." Physical Review Fluids 5.12 (2020): 124102. 
  21. Xu, Baorui, et al. "Effect of micro-grooves on drag reduction in Taylor-Couette flow." Physics of Fluids 35.4 (2023). 
  22. Flory, Paul J. Principles of polymer chemistry. Cornell university press, 1953. 
  23. Groisman, A., and Victor Steinberg. "Elastic vs. inertial instability in a polymer solution flow." Europhysics Letters 43.2 (1998): 165 
  24. Xi, Li. "Turbulent drag reduction by polymer additives: Fundamentals and recent advances." Physics of Fluids 31.12 (2019). 
  25. Bueche, F. "Mechanical degradation of high polymers." Journal of Applied Polymer Science 4.10 (1960): 101-106.  https://doi.org/10.1002/app.1960.070041016
  26. Mohsenipour, Ali Asghar, and Rajinder Pal. "Drag reduction in turbulent pipeline flow of mixed nonionic polymer and cationic surfactant systems." The Canadian Journal of Chemical Engineering 91.1 (2013): 190-201.  https://doi.org/10.1002/cjce.21618
  27. Groisman, Alexander, and Victor Steinberg. "Mechanism of elastic instability in Couette flow of polymer solutions: experiment." Physics of Fluids 10.10 (1998): 2451-2463.  https://doi.org/10.1063/1.869764
  28. Khayat, Roger E. "Onset of Taylor vortices and chaos in viscoelastic fluids." Physics of Fluids 7.9 (1995): 2191-2219.  https://doi.org/10.1063/1.868469