• 제목/요약/키워드: INS Error Model

검색결과 57건 처리시간 0.028초

INS/GPS 결합 칼만필터의 측정치 스무딩 및 예측 (Smoothing and Prediction of Measurement in INS/GPS Integrated Kalman Filter)

  • 이태규;김광진;제창해
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.944-952
    • /
    • 2001
  • Inertial navigation system(INS) errors increase with time due to inertial sensor errors, and therefore it is desired to combine INS with external aids such as GPS. However GPS informations have a randomly abrupt jump due to a sudden corruption of the received satellite signals and environment, and moreover GPS can\`t provide navigation solutions. In this paper, smoothing and prediction schemes are proposed for GPS`s jump or unavailable GPS. The smoothing algorithm which is designed as a scalar adaptive filter, smooths abrupt jump. The prediction algorithm which is proved by Schuler error model of INS, estimates INS error in appropriate time. The outputs of proposed algorithm apply stable measurements to GPS aided INS Kalman filter. Simulations show that the proposed algorithm can effectively remove measurement jump and predict INS error.

  • PDF

INS/GPS를 위한 적응필터 구성 (Adaptive filter Design for INS/GPS)

  • 유명종
    • 제어로봇시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.717-725
    • /
    • 2005
  • The adaptive filter is proposed for the INS/GPS. The proposed filter can estimate the variance of the process noise using the residual of the filter. To verify the efficiency of the adaptive filter, it is applied to the loosely-coupled INS/CPS that employs the additive quaternion error model. Simulation results demonstrate that the proposed filter is more effective in estimating the attitude error than EKF.

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권3호
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

관성항법시스템을 이용한 구륜 이동 로보트의 위치제어에 관한 연구 (A study on position control of wheeled mobile robot using the inertial navigation system)

  • 박붕렬;김기열;김원규;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1144-1148
    • /
    • 1996
  • This paper presents WMR modelling and path tracking algorithm using Inertial Navigation System. The error models of gyroscope and accelerometers in INS are derived by Gauss-Newton method which is nonlinear regression model. Then, to test availability of error model, we pursue the fitness diagnosis about probability characteristic for real data and estimated data. Performance of inertial sensor with error model and Kalman filter is pursued by comparing with one without them. The computer simulation shows that position error remarkably decrease when error compensation is applied.

  • PDF

강결합방식의 GPS/INS 시스템에 대한 측정치 시간지연 추정 연구 (A Study on the Measurement Time-Delay Estimation of Tightly-Coupled GPS/INS system)

  • 이윤선;이상정
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.116-123
    • /
    • 2008
  • In this paper we study the performance of the measurement time-delay estimation of tightly-coupled GPS/INS(Global positioning system/Inertial Navigation system) system. Generally, the heading error estimation performance of loosely-coupled GPS/INS system using GPS's Navigation Solution is poor. In the case of tightly-coupled GPS/INS system using pseudo-range and pseudo-range rate, the heading error estimation performance is better. However, the time-delay error on the measurement(pseudo-range rate) make the heading error estimation performance degraded. So that, we propose the time-delay model on the measurement and compose the time-delay estimator. And we confirm that the heading error estimation performance in the case of measurement time-delay existence is similar with the case of no-delay by Monte-Carlo simulation.

In - Motion Alignment Method for a Low - cost IMU based GPS/INS System

  • Kim, Jeong-Won;Oh, Snag-Heon;Hwang, Dong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.990-994
    • /
    • 2003
  • When the low cost IMU is used, the result of the stationary self alignment is not suitable for navigation. In this paper, an in-motion alignment method is proposed to obtain an accurate initial attitude of a low cost IMU based GPS/INS integration system. To design Kalman filter for alignment, large heading error model is introduced. And then Kalman filter is designed to estimate initial attitude error as the indirect feedback filter. In order to assess performance of the alignment method, computer simulations are carried out. The simulation results show that initial attitude error rapidly reduces.

  • PDF

INS/GPS 통합 항법 시스템의 위치 오차 개선을 위한 IMM 필터 설계 (A Design of the IMM Filter for Improving Position Error of the INS / GPS Integrated System)

  • 백승준
    • 한국항행학회논문지
    • /
    • 제23권3호
    • /
    • pp.221-227
    • /
    • 2019
  • 본 논문에서는 위성 항법 해를 이용하여 INS의 순수항법을 보상하는 INS / GPS 통합 항법 알고리즘을 구성할 때 불안정한 위성 항법 위치 해 출력에도 안정적인 항법 성능을 보장할 수 있는 IMM (interacting multiple model)필터를 설계하였다. INS / GPS 통합 항법 시스템 구조 내에 칼만필터를 서브 필터로 하는 IMM 필터 구조를 정의하였다. IMM필터 구성시 서브필터는 2개로 구성하였으며, 각각의 칼만필터는 INS의 오차 방정식으로부터 위치, 속도, 자세, 센서 오차 등으로 구성한 16차의 상태를 정의하고 추가로 위성항법의 유색 잡음(coloured measurement noise)영향으로 2차를 확장하였다. 제안한 IMM 필터의 성능을 확인하기위해 위성 항법에 임의의 오차를 위도와 경도에 삽입하고 필터의 추종성을 확인하는 것으로 성능을 비교 분석하였다. 몬테카를로 시뮬레이션을 100회 수행하여 결과를 RMS로 비교한 결과 제안한 필터 방식이 오차에 대해 안정적이며 빠른 수렴결과를 보이고 있음을 확인할 수 있었다.

경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석 (Error Analysis of Initial Fine Alignment for Non-leveling INS)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

무인자율수중운동체의 보정항법을 위한 축소된 오차 모델 (Reduced Error Model for Integrated Navigation of Unmanned Autonomous Underwater Vehicle)

  • 박용곤;강철우;이달호;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.584-591
    • /
    • 2014
  • This paper presents a novel aided navigation method for AUV (Autonomous Underwater Vehicles). The navigation system for AUV includes several sensors such as IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and depth sensor. In general, the $13^{th}$ order INS error model, which includes depth error, velocity error, attitude error, and the accelerometer and gyroscope biases as state variables is used with measurements from DVL and depth sensors. However, the model may degrade the estimation performance of the heading state. Therefore, the $11^{th}$ INS error model is proposed. Its validity is verified by using a degree of observability and analyzing steady state error. The performance of the proposed model is shown by the computer simulation. The results show that the performance of the reduced $11^{th}$ order error model is better than that of the conventional $13^{th}$ order error model.

천측 항법 시스템의 수직 방향 결정 (Determination of Local Vortical in Celestial Navigation Systems)

  • 석병석;유준
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.