• 제목/요약/키워드: IF

검색결과 48,766건 처리시간 0.054초

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan;Oh, Dong Yeol
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1969-1980
    • /
    • 2017
  • Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

CHARACTERIZATIONS OF A KRULL RING R[X]

  • Chang, Gyu-Whan
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.543-549
    • /
    • 2001
  • We show that R[X] is a Krull (Resp. factorial) ring if and only if R is a normal Krull (resp, factorial) ring with a finite number of minimal prime ideals if and only if R is a Krull (resp. factorial) ring with a finite number of minimal prime ideals and R(sub)M is an integral domain for every maximal ideal M of R. As a corollary, we have that if R[X] is a Krull (resp. factorial) ring and if D is a Krull (resp. factorial) overring of R, then D[X] is a Krull (resp. factorial) ring.

  • PDF

EXTENSIONS OF GENERALIZED STABLE RINGS

  • Wanru, Zhang
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1091-1097
    • /
    • 2009
  • In this paper, we investigate the extensions of generalized stable rings. It is shown that a ring R is a generalized stable ring if and only if R has a complete orthogonal set {e$_1$, . . . , e$_n$} of idempotents such that e$_1$Re$_1$, . . . , e$_n$Re$_n$ are generalized stable rings. Also, we prove that a ring R is a generalized stable ring if and only if R[[X]] is a generalized stable ring if and only if T(R,M) is a generalized stable ring.

LOCALLY PSEUDO-VALUATION DOMAINS OF THE FORM D[X]Nv

  • Chang, Gyu-Whan
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1405-1416
    • /
    • 2008
  • Let D be an integral domain, X an indeterminate over D, $N_v = \{f{\in}D[X]|(A_f)_v=D\}.$. Among other things, we introduce the concept of t-locally PVDs and prove that $D[X]N_v$ is a locally PVD if and only if D is a t-locally PVD and a UMT-domain, if and only if D[X] is a t-locally PVD, if and only if each overring of $D[X]N_v$ is a locally PVD.

Composite Hurwitz Rings Satisfying the Ascending Chain Condition on Principal Ideals

  • Lim, Jung Wook;Oh, Dong Yeol
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1115-1123
    • /
    • 2016
  • Let $D{\subseteq}E$ be an extension of integral domains with characteristic zero, I be a nonzero proper ideal of D and let H(D, E) and H(D, I) (resp., h(D, E) and h(D, I)) be composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper, we show that H(D, E) satisfies the ascending chain condition on principal ideals if and only if h(D, E) satisfies the ascending chain condition on principal ideals, if and only if ${\bigcap}_{n{\geq}1}a_1{\cdots}a_nE=(0)$ for each infinite sequence $(a_n)_{n{\geq}1}$ consisting of nonzero nonunits of We also prove that H(D, I) satisfies the ascending chain condition on principal ideals if and only if h(D, I) satisfies the ascending chain condition on principal ideals, if and only if D satisfies the ascending chain condition on principal ideals.

WHEN NILPOTENTS ARE CONTAINED IN JACOBSON RADICALS

  • Lee, Chang Ik;Park, Soo Yong
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1193-1205
    • /
    • 2018
  • We focus our attention on a ring property that nilpotents are contained in the Jacobson radical. This property is satisfied by NI and left (right) quasi-duo rings. A ring is said to be NJ if it satisfies such property. We prove the following: (i) $K{\ddot{o}}the^{\prime}s$ conjecture holds if and only if the polynomial ring over an NI ring is NJ; (ii) If R is an NJ ring, then R is exchange if and only if it is clean; and (iii) A ring R is NJ if and only if so is every (one-sided) corner ring of R.

THE COHN-JORDAN EXTENSION AND SKEW MONOID RINGS OVER A QUASI-BAER RING

  • HASHEMI EBRAHIM
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.1-9
    • /
    • 2006
  • A ring R is called (left principally) quasi-Baer if the left annihilator of every (principal) left ideal of R is generated by an idempotent. Let R be a ring, G be an ordered monoid acting on R by $\beta$ and R be G-compatible. It is shown that R is (left principally) quasi-Baer if and only if skew monoid ring $R_{\beta}[G]$ is (left principally) quasi-Baer. If G is an abelian monoid, then R is (left principally) quasi-Baer if and only if the Cohn-Jordan extension $A(R,\;\beta)$ is (left principally) quasi-Baer if and only if left Ore quotient ring $G^{-1}R_{\beta}[G]$ is (left principally) quasi-Baer.