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Abstract. Let D ⊆ E be an extension of integral domains with characteristic zero, I be

a nonzero proper ideal of D and let H(D,E) and H(D, I) (resp., h(D,E) and h(D, I)) be

composite Hurwitz series rings (resp., composite Hurwitz polynomial rings). In this paper,

we show that H(D,E) satisfies the ascending chain condition on principal ideals if and

only if h(D,E) satisfies the ascending chain condition on principal ideals, if and only if∩
n≥1 a1 · · · anE = (0) for each infinite sequence (an)n≥1 consisting of nonzero nonunits of

D. We also prove that H(D, I) satisfies the ascending chain condition on principal ideals

if and only if h(D, I) satisfies the ascending chain condition on principal ideals, if and only

if D satisfies the ascending chain condition on principal ideals.

1. Introduction

1.1 Composite Hurwitz Rings

Let R be a commutative ring with identity and let H(R) be the set of formal
expressions of the type f =

∑∞
i=0 aiX

i, where ai ∈ R. Define addition and ∗-
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product on H(R) as follows: for f =
∑∞

i=0 aiX
i, g =

∑∞
i=0 biX

i ∈ H(R),

f + g =
∞∑
i=0

(ai + bi)X
i and f ∗ g =

∞∑
n=0

cnX
n,

where cn =
∑n

i=0

(
n
i

)
aibn−i. Then H(R) becomes a commutative ring with identity

containing R under these two operations, i.e., H(R) = (R[[X]],+, ∗). We call it
the Hurwitz series ring over R. The Hurwitz polynomial ring h(R) is defined as
the same way, i.e., h(R) is the set of formal expression of the type f =

∑n
i=0 aiX

i,
where ai ∈ R with the usual addition and ∗-product. Note that (h(R),+, ∗) is also a
commutative ring with identity containing R. In order to prevent the confusion, for
n ≥ 1, we denote the nth Hurwitz power of f by f (n), where f is either a Hurwitz
series or a Hurwitz polynomial. Also, for a Hurwitz series f =

∑∞
i=0 aiX

i ∈ H(R),
the order of f is the smallest nonnegative ingegerm such that am ̸= 0 and is denoted
by ord(f). For an f =

∑∞
i=0 aiX

i ∈ H(R), we mean by the support of f , denoted by
supp(f), the set of nonnegative integers n such that an ̸= 0. Also, for an f ∈ H(R)
and a nonnegative integer n, f(n) stands for the coefficient of Xn in f .

Let D ⊆ E be an extension of commutative rings with identity and set
H(D,E) := {f ∈ H(E) | f(0) ∈ D} and h(D,E) := {f ∈ h(E) | f(0) ∈ D}.
Then H(D) ⊆ H(D,E) ⊆ H(E) and h(D) ⊆ h(D,E) ⊆ h(E). The rings H(D,E)
and h(D,E) are called the composite Hurwitz series ring and the composite Hurwitz
polynomial ring, respectively. In other words, H(D,E) = (D +XE[[X]],+, ∗) and
h(D,E) = (D +XE[X],+, ∗).

Let I be a nonzero proper ideal of D and set H(D, I) = {f ∈ H(D) | f(n) ∈ I
for all n ≥ 1} (resp., h(D, I) = {f ∈ h(D) | f(n) ∈ I for all n ≥ 1}). Then
D ( H(D, I) ( H(D) and D ( h(D, I) ( h(D).

1.2 Ascending Chain Condition on Principal Ideals

As a particular case of Noetherian rings, a ring satisfying the ascending chain
condition on principal ideals has been studied by many mathematicians. Let R
be a commutative ring with identity. Recall that R satisfies the ascending chain
condition on principal ideals (ACCP) if there does not exist an infinite strictly
ascending chain of principal ideals of R. It was shown that if R is an integral
domain, then R satisfies ACCP if and only if

∩
n≥1 a1 · · · anR = (0) for each infinite

sequence (an)n≥1 of nonzero nonunits of R [2, Remark 1.1]. In [2, Proposition 1.2
and Remark 1.4] (or [5, Theorem 3.4] and [6, Corollary 1.5(2)]), the authors proved
that if D ⊆ E is an extension of integral domains, then D+XE[[X]] satisfies ACCP
if and only if D +XE[X] satisfies ACCP, if and only if

∩
n≥1 a1 · · · anE = (0) for

each infinite sequence (an)n≥1 consisting of nonzero nonunits of D. Also, it was
shown that if D is an integral domain and I is a nonzero proper ideal of D, then
D+XI[[X]] satisfies ACCP if and only if D+XI[X] satisfies ACCP, if and only if D
satisfies ACCP [3, Proposition 4.6] (or [5, Theorem 3.7] and [6, Corollary 1.5(3)]).

In this article, we study when composite Hurwitz series rings H(D,E) and
H(D, I) and composite Hurwitz polynomial rings h(D,E) and h(D, I) satisfy
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ACCP, where D ⊆ E is an extension of integral domains with characteristic zero
and I is a nonzero proper ideal of D. More precisely, we show that H(D,E) satisfies
ACCP if and only if h(D,E) satisfies ACCP, if and only if

∩
n≥1 a1 · · · anE = (0) for

each infinite sequence (an)n≥1 consisting of nonzero nonunits of D (Theorem 2.4).
We also prove that H(D, I) satisfies ACCP if and only if h(D, I) satisfies ACCP, if
and only if D satisfies ACCP (Theorem 3.4).

2. Composite Hurwitz Rings H(D,E) and h(D,E)

In this section, we characterize when the composite Hurwitz series ring H(D,E)
and the composite Hurwitz polynomial ring h(D,E) satisfy ACCP, where D ⊆ E
is an extension of integral domains with characteristic zero. We start with a simple
result whose proof is straightforward.

Proposition 2.1. Let D ⊆ E be an extension of commutative rings with identity.
Then the following conditions are equivalent.

(1) H(D,E) is an integral domain.

(2) h(D,E) is an integral domain.

(3) D ⊆ E is an extension of integral domains with characteristic zero.

We next characterize when a Hurwitz series (resp., Hurwitz polynomial) is a unit
in the composite Hurwitz series ring H(D,E) (resp., composite Hurwitz polynomial
ring h(D,E)).

Lemma 2.2. Let D ⊆ E be an extension of commutative rings with identity. Then
the following assertions hold.

(1) A Hurwitz series f ∈ H(D,E) is a unit if and only if f(0) is a unit in D.

(2) A Hurwitz polynomial f =
∑n

i=0 aiX
i ∈ h(D,E) is a unit if and only if a0 is

a unit in D and for each i = 1, . . . , n, ai is nilpotent or some power of ai is
with torsion.

Proof. (1) If f is a unit in H(D,E), then f ∗ g = 1 for some g ∈ H(D,E); so
f(0)g(0) = 1. Hence f(0) is a unit in D. Conversely, if f(0) is a unit in D, then
f(0) is a unit in E; so f ∗ g = 1 for some g ∈ H(E) [4, Proposition 2.5]. Since
g(0) = 1

f(0) ∈ D, g ∈ H(D,E). Thus f is a unit in H(D,E).

(2) If f is a unit in h(D,E), then f ∗g = 1 for some g ∈ h(D,E); so a0g(0) = 1.
Hence a0 is a unit in D. Also, f is a unit in h(E); so for each i = 1, . . . , n, ai is
nilpotent or some power of ai is with torsion [1, Theorem 3.1]. For the converse,
assume that a0 is a unit in D and for each i = 1, . . . , n, ai is nilpotent or some
power of ai is with torsion. Then f is a unit in h(E) [1, Theorem 3.1]; so f ∗ g = 1
for some g ∈ h(E). Since a0 is a unit in D, g(0) = 1

a0
∈ D; so g ∈ h(D,E). Thus f

is a unit in h(D,E). 2
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To characterize when composite Hurwitz rings H(D,E) and h(D,E) satisfy
ACCP, we need the following lemma.

Lemma 2.3. Let D ⊆ E be an extension of integral domains with characteristic
zero and let (fn)n≥1 be an infinite sequence of nonzero nonunits of H(D,E) (resp.,
h(D,E)). If (fn)n≥1 has an infinite subsequence of series with positive order (resp.,
polynomials with positive degree), then

∩
n≥1 f1 ∗ · · · ∗ fn ∗ H(D,E) = (0) (resp.,∩

n≥1 f1 ∗ · · · ∗ fn ∗ h(D,E) = (0)).

Proof. We first consider the composite Hurwitz series ring case. Let (fn)n≥1 be an
infinite sequence of nonzero nonunits of H(D,E) which has an infinite subsequence
of series with positive order. If g ∈

∩
n≥1 f1 ∗ · · · ∗ fn ∗H(D,E), then for all n ≥ 1,

there exists an element hn ∈ H(D,E) such that g = f1 ∗ · · · ∗ fn ∗ hn. Note that by
Proposition 2.1, H(D,E) is an integral domain; so ord(g) ≥ ord(f1)+ · · ·+ ord(fn)
for all n ≥ 1. Since ord(fi) is positive for infinitely many i, ord(g) = ∞. Hence
g = 0, which indicates that

∩
n≥1 f1 ∗ · · · ∗ fn ∗H(D,E) = (0).

We next consider the composite Hurwitz polynomial ring case. Let (fn)n≥1

be an infinite sequence of nonzero nonunits of h(D,E) which contains an infinite
subsequence of polynomials with positive degree. Let g ∈

∩
n≥1 f1∗· · ·∗fn∗h(D,E).

Then for all n ≥ 1, we can find a suitable element hn ∈ h(D,E) such that g =
f1 ∗ · · · ∗ fn ∗ hn. Note that by Proposition 2.1, h(D,E) is an integral domain; so
deg(g) ≥ deg(f1)+ · · ·+ deg(fn) for all n ≥ 1. Since deg(fi) ≥ 1 for infinitely many
i, deg(g) = ∞. Thus g = 0, which shows that

∩
n≥1 f1 ∗ · · · ∗ fn ∗ h(D,E) = (0). 2

We now give the main result in this section.

Theorem 2.4. Let D ⊆ E be an extension of integral domains with characteristic
zero. Then the following statements are equivalent.

(1) H(D,E) satisfies ACCP.

(2) h(D,E) satisfies ACCP.

(3)
∩

n≥1 a1 · · · anE = (0) for each infinite sequence (an)n≥1 consisting of nonzero
nonunits of D.

(4) D +XE[[X]] satisfies ACCP.

(5) D +XE[X] satisfies ACCP.

Proof. (1) ⇒ (2) Let f1 ∗ h(D,E) ⊆ f2 ∗ h(D,E) ⊆ · · · be an ascending chain of
principal ideals of h(D,E). Then for each i ≥ 1, there exists an element gi ∈ h(D,E)
such that fi = fi+1∗gi. Note that f1∗H(D,E) ⊆ f2∗H(D,E) ⊆ · · · is an ascending
chain of principal ideals of H(D,E). Since H(D,E) satisfies ACCP, we can find a
positive integer m such that fk ∗ H(D,E) = fm ∗ H(D,E) for all k ≥ m. Hence
for all k ≥ m, there exists a unit hk ∈ H(D,E) such that fk = fk+1 ∗ hk. Since
H(D,E) is an integral domain, hk = gk for all k ≥ m. Note that {deg(fi)}i≥1 is a
monotone decreasing sequence of nonnegative integers; so it should be stationary.
Let n be the smallest positive integer such that deg(fi) = deg(fn) for all i ≥ n.
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Then deg(gi) = 0 for all i ≥ n, which means that gi is a unit in D for all i ≥ n.
Thus fi ∗ h(D,E) = fn ∗ h(D,E) for all i ≥ n.

(2) ⇒ (3) Let (an)n≥1 be an infinite sequence consisting of nonzero nonunits of
D and let e ∈

∩
n≥1 a1 · · · anE. Note that by Lemma 2.2(2), (an)n≥1 is an infinite

sequence consisting of nonzero nonunits of h(D,E). Since h(D,E) satisfies ACCP,
we have

eX ∈
∩
n≥1

a1 · · · anh(D,E)

= (0),

where the equality follows from [2, Remark 1.1]. Thus e = 0, which indicates that∩
n≥1 a1 · · · anE = (0).
(3) ⇒ (1) Let (fn)n≥1 be an infinite sequence of nonzero nonunits of H(D,E).

If (fn)n≥1 contains an infinite subsequence of series with positive order, then by
Lemma 2.3,

∩
n≥1 f1 ∗ · · · ∗fn ∗H(D,E) = (0); so we may assume that for all n ≥ 1,

the order of fn is zero. Let g ∈
∩

n≥1 f1 ∗ · · · ∗ fn ∗H(D,E). Then for all n ≥ 1,
there exists an element hn ∈ H(D,E) such that g = f1 ∗· · ·∗fn ∗hn. Since H(D,E)
is an integral domain, we have

g(ord(g)) = f1(0) · · · fn(0)hn(ord(hn))

for all n ≥ 1. Note that by Lemma 2.2(1), {fi(0)}i≥1 consists of nonzero nonunits
in D. Hence we obtain

g(ord(g)) ∈
∩
n≥1

f1(0) · · · fn(0)E

= (0)

by (3). Thus g = 0, which implies that H(D,E) satisfies ACCP [2, Remark 1.1].
(3) ⇔ (4) ⇔ (5) These equivalences were shown in [2, Proposition 1.2 and

Remark 1.4] (or [5, Theorem 3.4] and [6, Corollary 1.5(2)]). 2

Remark 2.5. By replacing the order of a Hurwitz series with the degree of a
Hurwitz polynomial, we can give a direct proof of (3) ⇒ (2) in Theorem 2.4. For
the sake of completeness, we insert it as follows. Let (fn)n≥1 be an infinite sequence
of nonunits of h(D,E). If (fn)n≥1 has an infinite subsequence of polynomials with
positive degree, then by Lemma 2.3,

∩
n≥1 f1 ∗ · · · ∗ fn ∗ h(D,E) = (0); so we may

assume that fn is a constant for all n ≥ 1. Let g ∈
∩

n≥1 f1 ∗ · · · ∗ fn ∗ h(D,E)
and a be the coefficient of the largest degree term of g. Then for all n ≥ 1, there
exists an element hn ∈ h(D,E) such that g = f1 ∗ · · · ∗ fn ∗ hn; so for all n ≥ 1,
a = f1 · · · fnbn, where bn is the coefficient of the largest degree term of hn. Hence
a ∈

∩
n≥1 f1 · · · fnE. However

∩
n≥1 f1 · · · fnE = (0) by (3). Thus g = 0, which

implies that h(D,E) satisfies ACCP.
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3. Composite Hurwitz Rings H(D, I) and h(D, I)

In this section, we characterize when the composite Hurwitz series ring H(D, I)
and the composite Hurwitz polynomial ring h(D, I) satisfy ACCP, where D is an
integral domain with characteristic zero and I is a nonzero proper ideal of D. To
do this, we study analogues of Proposition 2.1 and Lemmas 2.2 and 2.3.

Proposition 3.1. Let D be a commutative ring with identity and I a nonzero
proper ideal of D. Then the following conditions are equivalent.

(1) H(D, I) is an integral domain.

(2) h(D, I) is an integral domain.

(3) D is both an integral domain and a torsion-free Z-module.

(4) D is an integral domain with characteristic zero.

Lemma 3.2. Let D be a commutative ring with identity and I a nonzero proper
ideal of D. Then the following assertions hold.

(1) A Hurwitz series f ∈ H(D, I) is a unit if and only if f(0) is a unit in D.

(2) A Hurwitz polynomial f =
∑n

i=0 aiX
i ∈ h(D, I) is a unit if and only if a0 is

a unit in D and for each i = 1, . . . , n, ai is nilpotent or some power of ai is
with torsion.

Proof. (1) If f is a unit in H(D, I), then there exists an element g ∈ H(D, I)
such that f ∗ g = 1; so f(0)g(0) = 1. Hence f(0) is a unit in D. Conversely,
if f(0) is a unit in D, then we can find a suitable element g ∈ H(D) such that
f ∗ g = 1 [4, Proposition 2.5]. Now we claim that g ∈ H(D, I). If g ∈ D, then
we have nothing to prove; so we assume that g ̸∈ D. Let m be the smallest
positive integer in supp(g). Then 0 = (f ∗ g)(m) = f(0)g(m) + f(m)g(0); so

g(m) = − f(m)g(0)
f(0) ∈ I. Let n ∈ supp(g) \ {0} and suppose that g(k) ∈ I for all k ∈

supp(g) with 0 < k < n. Note that 0 = (f ∗g)(n) = f(0)g(n)+
∑n

i=1

(
n
i

)
f(i)g(n−i);

so g(n) = −
∑n

i=1 (
n
i)f(i)g(n−i)

f(0) ∈ I. Hence g ∈ H(D, I), and thus f is a unit in

H(D, I).
(2) If f is a unit in h(D, I), then f ∗ g = 1 for some g ∈ h(D, I); so a0g(0) = 1.

Hence a0 is a unit in D. Also, f is a unit in h(D); so for each i = 1, . . . , n, ai is
nilpotent or some power of ai is with torsion [1, Theorem 3.1]. For the converse,
assume that a0 is a unit in D and for each i = 1, . . . , n, ai is nilpotent or some power
of ai is with torsion. Then f is a unit in h(D) [1, Theorem 3.1]; so f ∗g = 1 for some
g ∈ h(D). Now, a simple modification of the proof of (1) shows that g ∈ h(D, I).
Thus f is a unit in h(D, I). 2

Lemma 3.3. Let D be an integral domain with characteristic zero, I a nonzero
proper ideal of D, and let (fn)n≥1 be an infinite sequence of nonzero nonunits
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of H(D, I) (resp., h(D, I)). If (fn)n≥1 has an infinite subsequence of series with
positive order (resp., polynomials with positive degree), then

∩
n≥1 f1 ∗ · · · ∗ fn ∗

H(D, I) = (0) (resp.,
∩

n≥1 f1 ∗ · · · ∗ fn ∗ h(D, I) = (0)).

Proof. While the proof is similar to that of Lemma 2.3, we include it for the sake
of completeness.

We first consider the composite Hurwitz series ring case. Let (fn)n≥1 be an
infinite sequence of nonzero nonunits of H(D, I) which has an infinite subsequence
of series with positive order. If g ∈

∩
n≥1 f1 ∗ · · · ∗ fn ∗H(D, I), then for all n ≥ 1,

there exists an element hn ∈ H(D, I) such that g = f1 ∗ · · · ∗ fn ∗ hn. Note that by
Proposition 3.1, H(D, I) is an integral domain; so ord(g) ≥ ord(f1) + · · ·+ ord(fn)
for all n ≥ 1. Since ord(fi) is positive for infinitely many i, ord(g) = ∞. Hence
g = 0, which shows that

∩
n≥1 f1 ∗ · · · ∗ fn ∗H(D, I) = (0).

We next consider the composite Hurwitz polynomial ring case. Let (fn)n≥1

be an infinite sequence of nonzero nonunits of h(D, I) which contains an infinite
subsequence of polynomials with positive degree. Let g ∈

∩
n≥1 f1∗· · ·∗fn∗h(D, I).

Then for all n ≥ 1, we can find a suitable element hn ∈ h(D, I) such that g = f1 ∗
· · ·∗fn∗hn. Note that by Proposition 3.1, h(D, I) is an integral domain; so deg(g) ≥
deg(f1) + · · ·+ deg(fn) for all n ≥ 1. Since fi has the positive degree for infinitely
many i, deg(g) = ∞. Thus g = 0, which indicates that

∩
n≥1 f1 ∗ · · · ∗fn ∗h(D, I) =

(0). 2

We now give the main result in this section.

Theorem 3.4. Let D be an integral domain with characteristic zero and I a nonzero
proper ideal of D. Then the following statements are equivalent.

(1) H(D, I) satisfies ACCP.

(2) h(D, I) satisfies ACCP.

(3) D satisfies ACCP.

(4) D +XI[[X]] satisfies ACCP.

(5) D +XI[X] satisfies ACCP.

(6) H(D) satisfies ACCP.

(7) h(D) satisfies ACCP.

(8) D[[X]] satisfies ACCP.

(9) D[X] satisfies ACCP.

Proof. (1) ⇒ (2) Let f1 ∗ h(D, I) ⊆ f2 ∗ h(D, I) ⊆ · · · be an ascending chain of
principal ideals of h(D, I). Then for each i ≥ 1, there exists an element gi ∈ h(D, I)
such that fi = fi+1 ∗gi. Note that f1 ∗H(D, I) ⊆ f2 ∗H(D, I) ⊆ · · · is an ascending
chain of principal ideals of H(D, I). Since H(D, I) satisfies ACCP, we can find a
positive integer m such that fk ∗H(D, I) = fm ∗H(D, I) for all k ≥ m. Hence for
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all k ≥ m, there exists a unit hk ∈ H(D, I) such that fk = fk+1 ∗hk. Since H(D, I)
is an integral domain, hk = gk for all k ≥ m. Note that {deg(fi)}i≥1 is a monotone
decreasing sequence of nonnegative integers; so it should stop in finite steps. Let
n be the smallest positive integer such that deg(fi) = deg(fn) for all i ≥ n. Then
deg(gi) = 0 for all i ≥ n, which means that gi is a unit in D for all i ≥ n. Thus
fi ∗ h(D, I) = fn ∗ h(D, I) for all i ≥ n.

(2) ⇒ (3) Let (an)n≥1 be an infinite sequence consisting of nonzero nonunits of
D and choose any d ∈

∩
n≥1 a1 · · · anD. Note that by Lemma 3.2(2), (an)n≥1 is an

infinite sequence consisting of nonzero nonunits of h(D, I). Since h(D, I) satisfies
ACCP, we have

dX ∈
∩
n≥1

a1 · · · anh(D, I)

= (0),

where the equality comes from [2, Remark 1.1]. Hence d = 0, which indicates that∩
n≥1 a1 · · · anD = (0). Thus D satisfies ACCP.

(3) ⇒ (1) Let (fn)n≥1 be an infinite sequence of nonzero nonunits of H(D, I).
If (fn)n≥1 contains an infinite subsequence of series with positive order, then by
Lemma 3.3,

∩
n≥1 f1 ∗ · · · ∗ fn ∗H(D, I) = (0); so we may assume that for all n ≥ 1,

the order of fn is zero. Let g ∈
∩

n≥1 f1 ∗ · · · ∗ fn ∗ H(D, I). Then for all n ≥ 1,
there exists an element hn ∈ H(D, I) such that g = f1 ∗ · · · ∗ fn ∗hn. Since H(D, I)
is an integral domain, we have

g(ord(g)) = f1(0) · · · fn(0)hn(ord(hn))

for all n ≥ 1. Note that by Lemma 3.2(1), {fi(0)}i≥1 consists of nonzero nonunits
in D. Since D satisfies ACCP, we obtain

g(ord(g)) ∈
∩
n≥1

f1(0) · · · fn(0)D

= (0).

Thus g = 0, which implies that H(D, I) satisfies ACCP.

(3) ⇔ (4) ⇔ (5) These equivalences appear in [3, Proposition 4.6] (or [5, The-
orem 3.7] and [6, Corollary 1.5(3)]).

(3) ⇔ (6) ⇔ (7) ⇔ (8) ⇔ (9) These equivalences follow directly from Theorem
2.4 and [2, Remark 1.1] by applying D = E. 2
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