• Title/Summary/Keyword: IEEE1149.1

Search Result 56, Processing Time 0.027 seconds

Preceding Instruction Decoding Module(PIDM) for Test Performance Enhancement of JTAG based Systems (JTAG 기반 테스트의 성능향상을 위한 PIDM(Preceding Instruction Decoding Module)

  • 윤연상;김승열;권순열;박진섭;김용대;유영갑
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.85-92
    • /
    • 2004
  • A design of a preceding instruction decoding module(PIDM) is proposed aiming at performance enhancement of JTAG-based test complying to the IEEE 1149.1 standard. The PIDM minimizes the number of clocks by performing test access port(TAP) instruction decoding process prior to the execution of TAP-controlled test activities. The scheme allows the generation of signals such as test mode select(TMS) inside of a target system. The design employing PIDM demonstrates 15% performance enhancement with simulation of a CORDIC processor and 48% reduction of the TAP-controller's circuit size with respect to the conventional design of a non-PIDM version.

Design-for-Testability of The Floating-Point DSP Processor (부동 소수점 DSP 프로세서의 테스트 용이 설계)

  • Yun, Dae-Han;Song, Oh-Young;Chang, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.5B
    • /
    • pp.685-691
    • /
    • 2001
  • 본 논문은 4단계 파이프 라인과 VLIW (Very Long Instruction Word) 구조를 갖는 FLOVA라는 DSP 프로세서의 테스트용이 설계 기법을 다룬다. Full-scan design, BIST(Built-In-Self-Test), IEEE 1149.1의 기법들이 플립플롭과 floaing point unit, 내장된 메모리, I/O cell 등에 각각 적용되었다. 이러한 기법들은 테스트 용이도의 관점에서 FLOVA의 구조에 적절하게 적용되었다. 본 논문에서는 이와 같이 FLOVA에 적용된 테스트 용이 설계의 특징들을 중심으로 상세하게 기술한다.

  • PDF

Delay Test for Boundary-Scan based Architectures (경계면 스캔 기저 구조를 위한 지연시험)

  • 강병욱;안광선
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.199-208
    • /
    • 1994
  • This paper proposes a delay fault test technique for ICs and PCBs with the boundary-scan architectures supporting ANSI/IEEE Std 1149.1-1990. The hybrid delay fault model, which comprises both of gate delay faults and path delay faults, is selected. We developed a procedure for testing delay faults in the circuits with typical boundary scan cells supporting the standard. Analyzing it,we concluded that it is impractical because the test clock must be 2.5 times faster than the system clock with the cell architect-ures following up the state transition of the TAP controller and test instruction set. We modified the boundary-scan cell and developed test instructions and the test procedure. The modified cell and the procedure need test clock two times slower than the system clock and support the ANSI/IEEE standard perfectly. A 4-bit ALU is selected for the circuits under test. and delay tests are simulated by the SILOS simulator. The simulation results ascertain the accurate operation and effectiveeness of the modified mechanism.

  • PDF

A Study on the Performance Analysis of an Extended Scan Path Architecture (확장된 스캔 경로 구조의 성능 평가에 관한 연구)

  • 손우정
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.2
    • /
    • pp.105-112
    • /
    • 1998
  • In this paper, we propose a ESP(Extended Scan Path) architecture for multi-board testing. The conventional architectures for board testing are single scan path and multi-scan path. In the single scan path architecture, the scan path for test data is just one chain. If the scan path is faulty due to short or open, the test data is not valid. In the multi-scan path architecture, there are additional signals in multi-board testing. So conventional architectures are not adopted to multi-board testing. In the case of the ESP architecture, even though scan path is either short or open, it doesn't affect remaining other scan paths. As a result of executing parallel BIST and IEEE 1149.1 boundary scan test by using the proposed ESP architecture, we observed that the test time is short compared with the single scan path architecture. By comparing the ESP architecture with single scan path responding to independency of scan path, test time and with multi-scan path responding to signal, synchronization, we showed that the architecture has improved results.

  • PDF

A Study of Delay Test for Sequential circuit based on Boundary Scan Architecure (순서회로를 위한 경계면 스캔 구조에서의 지연시험 연구)

  • Lee, Chang-Hee;Kim, Jeong-Hwan;Yun, Tae-Jin;Nam, In-Gil;Ahn, Gwang-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.862-872
    • /
    • 1998
  • In this paper, we developed a delay test architecture and test procedure for clocked sequential circuit. In addition, we analyze the problems of conventional and previous method on delay test for clocked sequential circuit in IEEE 1149.1. This paper discusses several problems of Delay test on IEEE 1149.1 for clocked sequential circuit. Previous method has some problems of improper capture timing, of same pattern insertion, of increase of test time. We suggest a method called ARCH-S, is based on a clock counting technique to generate continuous clocks for clocked input of CUT. A 4-bit counter is selected for the circuit under test. The simulation results ascertain the aecurate operation and effectiveness of the proposed architecture.

  • PDF

An Implementation of JTAG API to Perform Dynamic Program Analysis for Embedded Systems (임베디드 시스템 동적 프로그램 분석을 위한 JTAG API 구현)

  • Kim, Hyung Chan;Park, Il Hwan
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.2
    • /
    • pp.31-42
    • /
    • 2014
  • Debugger systems are necessary to apply dynamic program analysis when evaluating security properties of embedded system software. It may be possible to make the use of software-based debugger and/or DBI framework if target devices support general purpose operating systems, however, constraints on applicability as well as environmental transparency might be incurred thereby hindering overall analyzability. Analysis with JTAG (IEEE 1149.1) debugging devices can overcome these difficulties in that no change would be involved in terms of internal software environment. In that sense, JTAG API can facilitate to practically perform dynamic program analysis for evaluating security properties of target device software. In this paper, we introduce an implementation of JTAG API to enable analysis of ARM core based embedded systems. The API function set includes the categories of debugger and target device controls: debugging environment and operation. To verify API applicability, we also provide example analysis tool implementations: our JTAG API could be used to build kernel function fuzzing and live memory forensics modules.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Yang, Myung-Hoon;Park, Young-Kyu;Lee, Dae-Yeal;Yoon, Hyun-Jun;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Semiconductor testing area challenges many testing issues due to the minimization and ultra high performance of current semiconductors. Among these issues, signal integrity test on interconnections must be solved for highly integrated circuits like SoC. In this paper, we propose an effective pattern application method for signal integrity test on interconnects. Proposed method can be applied by using boundary scan architecture and very efficient test can be preceded with pretty short test time.

Advanced JTAG-based On-Chip Debugging Unit Design for SoC

  • Yun Yeonsang;Kim Seungyoul;Kim Youngdae;You Younggap
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.61-65
    • /
    • 2004
  • An on-chip debugging unit is proposed aiming performance enhancement of JTAG-based SoC systems. The proposed unit comprises a JTAG module and a core breaker. The IEEE 1149.1 standard has been modified and applied to the new JTAG module. The proposed unit eliminates redundant clock cycles included in the TAP command execution stage reducing overall debugging time. TAP execution commands are repeatedly issued to perform debugging of complicated SoC systems. Simulation on the proposed unit shows some $14\%$ performance enhancement and $50\%$ gate count reduction compared to the conventional ones.

  • PDF

A Vehicle SoC Fault Diagnosis Technique using FlexRay Protocol

  • Kang, Seung-Yeop;Jung, Ji-Hun;Park, Sung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose vehicle SoC fault diagnosis platform using FlexRay protocol in order to detect the faults of semiconductor control chip even after vehicle production. Before FlexRay protocol by sending NFI (Null Frame Indicator) bit among the header segment and a specific identifier in the payload segment of FlexRay frame, this technique can be distinguishable from normal mode and test mode. By using this technique, it is possible to detect the faults such as performance degradation of vehicle network system caused by the aging or several problems of vehicle semiconductor chip. Also high reliability and safety of vehicle can be maintained by using structural test for vehicle SoC fault detection.

An Implementation of Automatic Boundary Scan Circuit Generator Supporting Private Instructions (특수 명령어를 지원하는 자동 경계 주사 생성기 구현에 관한 연구)

  • 박재흥;장훈
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.115-121
    • /
    • 2004
  • GenJTAG implemented in this paper is an automatic web-based boundary scan circuit generator. GenJTAG supports all the public instructions for the boundary scan technique, and also private instructions for other DFT techniques to be applied. Users can easily edit the generated boundary scan circuit code because it is described in behavioral level with the Verilog-HDL. GenJTAG has another advantage that any one can generate the boundary scan circuit by simply accessing to the web site.