• Title/Summary/Keyword: IEEE 802.3

Search Result 736, Processing Time 0.032 seconds

Enhanced Two-Step Search Scheme for Rapid and Reliable UWB Signal Acquisition (고속 고신뢰의 UWB 신호 동기획득을 위한 향상된 두 단계 탐색 기법)

  • Kim, Jae-Woon;Yang, Suck-Chel;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1133-1143
    • /
    • 2005
  • In this paper, we propose an enhanced two-step search scheme for rapid and reliable signal acquisition in UWB systems under multipath channels. The proposed TSS-LS (Two-Step Search scheme with the Linear search based Second step) achieves rapid acquisition performance comparable to the conventional TSS-BS (Two-Step Search scheme with the Bit reversal search based Second step) already proposed by the authors, based on the single-dwell search with two-step thresholds and search windows. However, unlike the TSS-BS which employs the bit reversal search in the second step, the proposed TSS-LS utilizes the linear search in the second step to improve the reliability of signal acquisition. Simulation results with multipath channel models by IEEE 802.15.3a show that the two-step search schemes for the UWB signal acquisition can achieve sig nificant reduction of the required mean acquisition time as compared to general search schemes. In addition, we observe that the proposed TSS-LS achieves quite good bit error rate performance for large signal-to-noise ratios, which is favorably comparable to the case of ideal perfect timing.

Distributed Medium Access Control for N-Screen Multicast Services in Home Networks

  • Hur, Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.567-572
    • /
    • 2016
  • N-screen is an emerging technology to support multimedia multicasting, content sharing and content mobility. N-screen service providers should obtain the technology that provides the highest quality content seamlessly. Distributed nature of WiMedia distributed-MAC protocol can provide full mobility support, and achieves seamless medium access method in contrast to IEEE 802.15.3. So, in this paper, WiMedia distributed-MAC protocol is adopted and an asynchronous multicast transmission (AMT) technology is proposed to enhance performance of seamless N-screen wireless service based on distributed-MAC. The ACK frame transmissions are not required for multicast transmissions. By using this property in AMT, if a device is a multicast receiver, its reserved time slots can be reserved by the other devices with 1-hop distance. Furthermore, each N-screen device broadcasts and shares the information including an order in asynchronous traffic reservations to reduce conflicts in determining the transmission order of asynchronous N-screen packets. Therefore, AMT scheme expands the number of time slots available and throughputs for multicast and asynchronous traffic reservations when comparing with the distributed-MAC standard system. N-screen communications based on distributed-MAC with the proposed AMT shows a new framework for realizing N-screen wireless service with the full content mobility.

A Low-Crosstalk Design of 1.25 Gbps Optical Triplexer Module for FTTH Systems

  • Kim, Sung-Il;Park, Sun-Tak;Moon, Jong-Tae;Lee, Hai-Young
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2006
  • In this paper, we analyzed and measured the electrical crosstalk characteristics of a 1.25 Gbps triplexer module for Ethernet passive optical networks to realize fiber-tothe-home services. Electrical crosstalk characteristic of the 1.25 Gbps optical triplexer module on a resistive silicon substrate should be more serious than on a dielectric substrate. Consequently, using the finite element method, we analyze the electrical crosstalk phenomena and propose a silicon substrate structure with a dummy ground line that is the simplest low-crosstalk layout configuration in the 1.25 Gbps optical triplexer module. The triplexer module consists of a laser diode as a transmitter, a digital photodetector as a digital data receiver, and an analog photodetector as a cable television signal receiver. According to IEEE 802.3ah and ITU-T G.983.3, the digital receiver and analog receiver sensitivities have to meet -24 dBm at $BER=10^{-12}$ and -7.7 dBm at 44 dB SNR. The electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysis and measurement results, the proposed silicon substrate structure that contains the dummy line with $100\;{\mu}m$ space from the signal lines and 4 mm separations among the devices satisfies the electrical crosstalk level compared to a simple structure. This proposed structure can be easily implemented with design convenience and greatly reduce the silicon substrate size by about 50 %.

  • PDF

Sampling Jitter Effect on a Reconfigurable Digital IF Transceiver to WiMAX and HSDPA

  • Yu, Bong-Guk;Lee, Jae-Kwon;Kim, Jin-Up;Lim, Kyu-Tae
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.326-334
    • /
    • 2011
  • This paper outlines the time jitter effect of a sampling clock on a software-defined radio technology-based digital intermediate frequency (IF) transceiver for a mobile communication base station. The implemented digital IF transceiver is reconfigurable to high-speed data packet access (HSDPA) and three bandwidth profiles: 1.75 MHz, 3.5 MHz, and 7 MHz, each incorporating the IEEE 802.16d worldwide interoperability for microwave access (WiMAX) standard. This paper examines the relationship between the signal-to-noise ratio (SNR) characteristics of a digital IF transceiver with an under-sampling scheme and the sampling jitter effect on a multichannel orthogonal frequency-division multiplexing (OFDM) signal. The simulation and experimental results show that the SNR of the OFDM system with narrower band profiles is more susceptible to sampling clock jitter than systems with relatively wider band profiles. Further, for systems with a comparable bandwidth, HSDPA outperforms WiMAX, for example, a 5 dB error vector magnitude improvement at 15 picoseconds time jitter for a bandwidth of WiMAX 3.5 MHz profile.

A 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC with Various Circuit Sharing Schemes (다양한 회로 공유기법을 사용하는 10비트 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC)

  • Yoon, Kun-Yong;Lee, Se-Won;Choi, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.53-63
    • /
    • 2009
  • This work proposes a 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS ADC for WLAN such as an IEEE 802.11n standard. The proposed ADC employs a three-stage pipeline architecture and minimizes power consumption and chip area by sharing as many circuits as possible. Two multiplying DACs share a single amplifier without MOS switches connected in series while the shared amplifier does not show a conventional memory effect. All three flash ADCs use only one resistor ladder while the second and third flash ADCs share all pre-amps to further reduce power consumption and chip area. The interpolation circuit employed in the flash ADCs halves the required number of pre-amps and an input-output isolated dynamic latch reduces the increased kickback noise caused by the pre-amp sharing. The prototype ADC implemented in a 0.18um n-well 1P6M CMOS process shows the DNL and INL within 0.83LSB and 1.52LSB at 10b, respectively. The ADC measures an SNDR of 52.1dB and an SFDR of 67.6dB at a sampling rate of 100MS/s. The ADC with an active die area of $0.8mm^2$ consumes 27.2mW at 1.8V and 100MS/s.

Measurement and Analysis of Performance to Transfer Data in a Wireless-Cum-Wired Intra-Network (유무선 통합 인트라넷 환경에서 데이터 전송 성능 측정 및 분석)

  • Hur Hye-Sun;Hong Youn-Sik;Woo Yo-Seop
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.99-108
    • /
    • 2004
  • We have designed and implemented a Voice Messenger System(VMS) for sending and receiving voice data in order to measure and analyze the performance of a multimedia data transfer system using PDAs(Personal Digital Assistants) in a fast wireless LAN environment. The VMS has been configured as an infrastructure network by integrating a wireless intra-network based on IEEE 802,11 b standard with a wired network based on Ethernet. A sending time, a receiving time and a round-trip time(RTT) have been measured by varying its pecket size from 256 to 6656 bytes, Besides, we have performed the experiments to see which NIC is more stable between CF and PCMCIA type in such a wireless LAN environment, The results of such experiments show that the NIC with PCMClA type is better than that with CF type from the points of both efficiency and stability. The performance of a notebook computer with the attachment of a wireless NIC that is used as a VMS client is almost constant by varying its packet size when transferring voice data. However, with PDA client, in the case of receiving packets from the VMS server, the performance is the best when the pecket size is 6656 bytes, In addition, in the case of sending packets from PDA client to the VMS server, the performance is the best when the packet size is 4096 bytes. Even with the same pecket size, the time of receiving packets from the VMS server to PDA is longer than the time of sending packets from PDA to the VMS Server, Thus, we conclude that when PDA is used as a client by applying different pecket size when sending and receiving packets should be achieved a better performance over a wireless LAN environment.

  • PDF

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.

A transmit function implementation of wireless LAN MAC with QoS using single transmit FIFO (단일 송신 피포를 이용한 QoS 기능의 무선랜 MAC의 송신 기능 구현)

  • Park, Chan-Won;Kim, Jung-Sik;Kim, Bo-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.237-239
    • /
    • 2004
  • Wireless LAN Voice over IP(VoIP) equipment needs Quality-of-Service(QoS) with priority for processing real-time traffic. This paper shows transmit function implementation of wireless LAN(WLANs) media access control(MAC) support VoIP, and it has an advantage of guarantee of QoS and is adaptable to VoIP or mobile wireless equipment. The IEEE 802.11e standard in progress has four queues according to four access categories(AC) for transmit and the MAC transmits the data based on EDCA. The value of AC is from AC0 to AC3 and AC3 has the highest priority. The transmit method implemented at this paper ensure QoS using one transmit FIFO in hardware since real-time traffic data and non real-time traffic data has the different priority. The device driver classifies real-time data and non real-time data and transmit data to hardware with information about data type. The hardware conducts shorter backoff and selects faster AIFS slot for real-time data than it for non real-time data. Therefor It make give the real-time traffic data faster channel access chance than non real-time data and enhances QoS.

  • PDF

Resource Allocation Scheme for Millimeter Wave-Based WPANs Using Directional Antennas

  • Kim, Meejoung;Kim, Yongsun;Lee, Wooyong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.385-395
    • /
    • 2014
  • In this paper, we consider a resource allocation scheme for millimeter wave-based wireless personal area networks using directional antennas. This scheme involves scheduling the reservation period of medium access control for IEEE 802.15.3c. Objective functions are considered to minimize the average delay and maximize throughput; and two scheduling algorithms-namely, MInMax concurrent transmission and MAxMin concurrent transmission-are proposed to provide a suboptimal solution to each objective function. These are based on an exclusive region and two decision rules that determine the length of reservation times and the transmission order of groups. Each group consists of flows that are concurrently transmittable via spatial reuse. The algorithms appropriately apply two decision rules according to their objectives. A real video trace is used for the numerical results, which show that the proposed algorithms satisfy their objectives. They outperform other schemes on a range of measures, showing the effect of using a directional antenna. The proposed scheme efficiently supports variable bit rate traffic during the reservation period, reducing resource waste.

Cluster-based Minimum Interference Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks (멀티 라디오 멀티 채널 무선 메쉬 네트워크를 위한 클러스터 기반 최소 간섭 채널 할당)

  • Cha, Si Ho;Ryu, Min Woo;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2010
  • Total performance is improved by minimizing the channel interference between links in wireless mesh networks (WMNs). The paper refines on the CB-CA [1] to be suitable for multi-radio multi-channel (MRMC) WMNs. The CB-CA is the cluster-based channel assignment algorithm for one radio three channel WMN based on IEEE 802.11b/g. The CB-CA does not perform the channel scanning and the channel switching between the cluster heads (CHs) and the edge gateway nodes (EGs). However, the use of co-channel for links between CHs and EGs brings the problem of channel interference among many nodes. We propose and evaluate an improved CB-CA algorithm to solve this problem in MRMC WMNs. The proposed algorithm discriminates between transmission channel and receive channel and assigns channels to each interface randomly and advertises this information to neighbor clusters in order to be assigned no-interference channel between clusters. Therefore, the proposed algorithm can minimize the interference between clusters and also improve QoS, since it can use multiple interfaces and multiple channels.