• 제목/요약/키워드: Hypergeometric series

검색결과 151건 처리시간 0.023초

NOTE ON THREE OF RAMANUJAN'S THEOREMS

  • Park, In-Hyok;Seo, Tae-Young
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.71-75
    • /
    • 2000
  • The object of this note is to introduce three Ramanuian's formulae of similar nature among his many curious ones and to prove them by making use of the theory of generalized hypergeometric series.

  • PDF

The Fourth and Eighth Order Mock Theta Functions

  • Srivastava, Bhaskar
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.165-175
    • /
    • 2010
  • In the paper we consider deemed three mock theta functions introduced by Hikami. We have given their alternative expressions in double summation analogous to Hecke type expansion. In proving we also give a new Bailey pair relative to $a^2$. I presume they will be helpful in getting fundamental transformations.

ANOTHER PROOF OF KUMMER'S SECOND THEOREM

  • Arjun K. Rathie;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.933-936
    • /
    • 1998
  • We aim at giving another method of proving the well-known and useful Kummer's second theorem without changing its original form.

  • PDF

APPLICATION OF THE RELATION ASSOCIATED WITH 3F2 DUE TO THOMAE

  • KIM, YONG SUP;LEE, SEUNG WOO;SONG, HYEONG KEE;NAM, IN KYEONG
    • 호남수학학술지
    • /
    • 제26권1호
    • /
    • pp.133-136
    • /
    • 2004
  • By elementry manipulation of series together with summations of Gauss and $Saalsch\ddot{u}tz$, Exton deduced a new two term relation for the hypergeometric function $_3F_2(1)$. The aim of this paper is to derive Exton's result from Thomae's formula, together with two known integral formulas and the Euler's transformation for $_2F_1$.

  • PDF

SOME DECOMPOSITION FORMULAS ASSOCIATED WITH THE SARAN FUNCTION FE

  • Kim, Yong-Sup;Hasanov, Anvar;Lee, Chang-Hyun
    • 호남수학학술지
    • /
    • 제32권4호
    • /
    • pp.581-592
    • /
    • 2010
  • With the help of some techniques based upon certain inverse pairs of symbolic operators initiated by Burchnall-Chaundy, the authors investigate decomposition formulas associated with Saran's function $F_E$ in three variables. Many operator identities involving these pairs of symbolic operators are first constructed for this purpose. By employing their decomposition formulas, we also present a new group of integral representations for the Saran function $F_E$.

ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION

  • Choi, Junesang;Rathie, Arjun K.
    • 호남수학학술지
    • /
    • 제36권2호
    • /
    • pp.345-355
    • /
    • 2014
  • The main objective of this paper is to obtain a formula containing eleven interesting results for the reducibility of Kamp$\acute{e}$ de F$\acute{e}$riet function. The results are derived with the help of two general results for the series $_2F_1(2)$ very recently presented by Kim et al. Well known Kummer's second theorem and its contiguous results proved earlier by Rathie and Nagar, and Kim et al. follow special cases of our main findings.

ON SOME FORMULAS FOR THE GENERALIZED APPELL TYPE FUNCTIONS

  • Agarwal, Praveen;Jain, Shilpi;Khan, Mumtaz Ahmad;Nisar, Kottakkaran Sooppy
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.835-850
    • /
    • 2017
  • A remarkably large number of special functions (such as the Gamma and Beta functions, the Gauss hypergeometric function, and so on) have been investigated by many authors. Motivated the works of both works of both Burchnall and Chaundy and Chaundy and very recently, Brychkov and Saad gave interesting generalizations of Appell type functions. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present some new differential formulas for the generalized Appell's type functions ${\kappa}_i$, $i=1,2,{\ldots},18$ by considering the product of two $_4F_3$ functions.

GENERALIZATIONS OF GAUSS'S SECOND SUMMATION THEOREM AND BAILEY'S FORMULA FOR THE SERIES 2F1(1/2)

  • Rathie, Arjun K.;Kim, Yong-Sup;Choi, June-Sang
    • 대한수학회논문집
    • /
    • 제21권3호
    • /
    • pp.569-575
    • /
    • 2006
  • We aim mainly at presenting two generalizations of the well-known Gauss's second summation theorem and Bailey's formula for the series $_2F_1(1/2)$. An interesting transformation formula for $_pF_q$ is obtained by combining our two main results. Relevant connections of some special cases of our main results with those given here or elsewhere are also pointed out.

MOCK THETA FUNCTIONS OF ORDER 2 AND THEIR SHADOW COMPUTATIONS

  • Kang, Soon-Yi;Swisher, Holly
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2155-2163
    • /
    • 2017
  • Zwegers showed that a mock theta function can be completed to form essentially a real analytic modular form of weight 1/2 by adding a period integral of a certain weight 3/2 unary theta series. This theta series is related to the holomorphic modular form called the shadow of the mock theta function. In this paper, we discuss the computation of shadows of the second order mock theta functions and show that they share the same shadow with a mock theta function which appears in the Mathieu moonshine phenomenon.

A NEW PROOF OF SAALSCHÜTZ'S THEOREM FOR THE SERIES 3F2(1) AND ITS CONTIGUOUS RESULTS WITH APPLICATIONS

  • Kim, Yong-Sup;Rathie, Arjun Kumar
    • 대한수학회논문집
    • /
    • 제27권1호
    • /
    • pp.129-135
    • /
    • 2012
  • The aim of this paper is to establish the well-known and very useful classical Saalsch$\ddot{u}$tz's theorem for the series $_3F_2$(1) by following a different method. In addition to this, two summation formulas closely related to the Saalsch$\ddot{u}$tz's theorem have also been obtained. The results established in this paper are further utilized to show how one can obtain certain known and useful hypergeometric identities for the series $_3F_2$(1) and $_4F_3(1)$ already available in the literature.